Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Obtaining Pure Vanadyl Porphyrins from Heavy Petroleum Residue to Create Catalysts for Various Processes

https://doi.org/10.18412/1816-0387-2020-5-352-358

Abstract

Asphaltenes and resins from petroleum vacuum residue were shown to be the promising raw materials for obtaining pure vanadyl porphyrins. Vanadyl porphyrins are recovered from petroleum objects via the extraction of dimethyl formamide (DMFA) followed by purification on a chromatographic column using silica gel and sulfocationite. The composition of the obtained vanadyl porphyrins was studied by means of mass spectrometry with matrix assisted laser desorption/ionization (MALDI) and high performance liquid chromatography (HPLC). Thus obtained metalloporphyrins can be used as a basis to create catalysts for various chemical processes, which may serve as an alternative to their synthesis.

About the Authors

D. V. Milordov
A.E. Arbuzov Institute of Organic and Physical Chemistry – Subdivision of the Federal State Budgetary Institution of Science «Kazan Scientific Center of Russian Academy of Sciences», Kazan
Russian Federation


N. A. Mironov
A.E. Arbuzov Institute of Organic and Physical Chemistry – Subdivision of the Federal State Budgetary Institution of Science «Kazan Scientific Center of Russian Academy of Sciences», Kazan
Russian Federation


G. R. Abilova
A.E. Arbuzov Institute of Organic and Physical Chemistry – Subdivision of the Federal State Budgetary Institution of Science «Kazan Scientific Center of Russian Academy of Sciences», Kazan
Russian Federation


E. G. Tazeeva
A.E. Arbuzov Institute of Organic and Physical Chemistry – Subdivision of the Federal State Budgetary Institution of Science «Kazan Scientific Center of Russian Academy of Sciences», Kazan
Russian Federation


S. G. Yakubova
A.E. Arbuzov Institute of Organic and Physical Chemistry – Subdivision of the Federal State Budgetary Institution of Science «Kazan Scientific Center of Russian Academy of Sciences», Kazan
Russian Federation


M. R. Yakubov
A.E. Arbuzov Institute of Organic and Physical Chemistry – Subdivision of the Federal State Budgetary Institution of Science «Kazan Scientific Center of Russian Academy of Sciences», Kazan
Russian Federation


References

1. Che. Ch.-M, Huang J.-S. // Chem. Commun. 2009. V. 27. P. 3996—4015. DOI: 10.1039/B901221D.

2. Nakagaki S., Ferreira G., Ucoski G., Dias de Freitas Castro K. // Molecules. 2013. V. 18. P. 7279—7308. https://doi.org/10.3390/molecules18067279

3. Zhang J-L., Che Ch.-M. // Organic letters. 2002. V. 4. № 11. P. 1911—1914. https://doi.org/10.1021/ol0259138

4. Che Ch.-M., Huang J.-S. // Chem. Commun. 2009. V. 27. P. 3996—4015. https://doi.org/10.1039/B901221D

5. Nakagaki S., Ferreira G., Ucoski G., Dias de Freitas Castro K. // Molecules. 2013. V. 18. P. 7279—7308. https://doi.org/10.3390/molecules18067279

6. Caron S., Dugger R.W., Ruggeri S.G., Ragan J.A., Brown Ripin D.H. // Chem. Rev. 2006. V. 106. P. 2943—2989. https://doi.org/10.1021/cr040679f

7. Srour H., Jalkh J., le Maux P., Chevance S., Kobeissi M., Simonneaux G. // J. Mol. Catal. A Chem. 2013. V. 370. P. 75—79. https://doi.org/10.1016/j.molcata.2012.12.016

8. Javadli R, de Klerk A. // Appl Petrochem Res. 2012. V. 1. P. 3—19.

9. Alaei Kadijani J., Narimani El., Alaei Kadijani H. // Petroleum & Coal. 2014. V. 56. № 1. P. 116—123. https://doi.org/10.1016/j.molcata.2012.12.016

10. Sorokin A. // Chem. Rev. 2013. V. 113. P. 8152—8191. https://doi.org/10.1021/cr4000072

11. Vashurin A., Pukhovskaya S., Semeikin A., Golubchikov O. // Macroheterocycles. 2012. V. 5. № 1. P. 72—75. DOI: 10.6060/mhc2012.111251v.

12. Зиядова Т.М., Бурмистров В.А., Новиков И.В., Бобрицкая Е.В., Койфман О.И. // Нефтехимия. 2015. T. 55. № 6. C. 542—546.

13. Hassanein M., Gerges S., Abdo M., El-Khalafy S. // Journal of Molecular Catalysis A: Chemical. 2005. V. 240. P. 22—26. https://doi.org/10.1016/j.molcata.2005.05.043

14. Barona-Castaño Jh.C, Carmona-Vargas Ch.C., Brocksom T.J., de Oliveira K.T. // Molecules. 2016. V. 21. P. 310. https://doi.org/10.3390/molecules21030310

15. Rytting B.M., Singh I.D., Kilpatrick P.K., Harper M.R., Mennito A.S., Zhang Y. // Energy Fuels. 2018. V. 32. P. 5711—5724. https://doi.org/10.1021/acs.energyfuels.7b03358

16. Mironov N.A., Sinyashin K.O., Abilova G.R., Tazeeva E.G., Milordov D.V., Yakubova S.G., Borisov D.N., Gryaznov P.I., Borisova Yu.Yu., Yakubov M.R. // Russian Chemical Bulletin, International Edition. 2017. V. 66. № 8. P. 1450—1455. https://doi.org/10.1007/s11172-017-1907-4

17. Mironov N.A., Abilova G.R., Sinyashin K.O., Gryaznov P.I., Borisova Y.Y., Milordov D.V., Tazeeva E.G., Yakubova S.G., Borisov D.N., Yakubov M.R. // Energy Fuels. 2018. V. 32. P. 161—168. https://doi.org/10.1021/acs.energyfuels.7b02816

18. Yakubov M.R., Milordov D.V., Yakubova S.G., Borisov D.N., Gryaznov P.I., Mironov N.A., Abilova G.R., Borisova Y.Y., Tazeeva E.G. // Pet. Sci. Technol. 2016. V. 34. P. 177—183. https://doi.org/10.1080/10916466.2015.1122627

19. Богомолов А.И., Темянко М.Б., Хотынцева Л.И. Современные методы исследования нефтей: справочно-методическое пособие. Ленинград.: Недра, 1984. 433 с.

20. Acevedo S., García L.A., Rodríguez P. // Energy Fuels. 2012. V. 26. P. 1814—1819. https://doi.org/10.1021/ef201947h

21. Zhao X., Xu C., Shi Q. // Structure and modeling of complex petroleum mixtures. Springer, Cham, 2015. P. 39—70. https://doi.org/10.1007/430_2015_189


Review

For citations:


Milordov D.V., Mironov N.A., Abilova G.R., Tazeeva E.G., Yakubova S.G., Yakubov M.R. Obtaining Pure Vanadyl Porphyrins from Heavy Petroleum Residue to Create Catalysts for Various Processes. Kataliz v promyshlennosti. 2020;20(5):352-358. (In Russ.) https://doi.org/10.18412/1816-0387-2020-5-352-358

Views: 392


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)