Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Evaluation of the Catalytic Ability of Sulfocationites Based on Petroleum Asphaltenes in the Synthesis of Pyrazolidin-3-one

https://doi.org/10.18412/1816-0387-2020-5-359-365

Abstract

The feasibility of the room temperature catalytic cyclization of hydrazine hydrate and acrylic acid in the presence of an acidic catalyst containing petroleum asphaltenes was explored. The effect of sulfocationite on the synthesis of the target pyrazolidin-3-one was studied. Reaction masses and their distillation residues were analyzed. Gas chromatography–mass spectrometry and electrospray ionization were used to reveal different individual, oligomeric and polymeric products. The most probable structures of the obtained products were proposed.

About the Authors

L. I. Musin
FRC KazSC RAS, Kazan
Russian Federation


L. E. Foss
FRC KazSC RAS, Kazan
Russian Federation


K. V. Shabalin
FRC KazSC RAS, Kazan
Russian Federation


O. A. Nagornova
FRC KazSC RAS, Kazan
Russian Federation


D. N. Borisov
FRC KazSC RAS, Kazan
Russian Federation


V. V. Tutuchkina
A.E. Arbuzov Institute of Organic and Physical Chemistry – Subdivision of the Federal State Budgetary Institution of Science «Kazan Scientific Center of Russian Academy of Sciences», Kazan
Russian Federation


M. R. Yakubov
A.E. Arbuzov Institute of Organic and Physical Chemistry – Subdivision of the Federal State Budgetary Institution of Science «Kazan Scientific Center of Russian Academy of Sciences», Kazan
Russian Federation


References

1. Vries J.G., & Jackson S.D. // Catalysis Science & Technology, 2012, V. 2, N. 10, P. 2009, doi.org/10.1039/C2CY90039D.

2. Kiss F.E., Jovanović, M., Bošković G.C. // Fuel Processing Technology, 2010, V. 91, N. 10, P. 1316-1320. doi.org/10.1016/j.fuproc.2010.05.001.

3. Zhong Y., Zhang, P., Zhu X., Li H., Deng Q., Wang J., Zeng Z., Zou J.-J., Deng S. // ACS Sustainable Chem. Eng. 2019, № 7. P. 14973—14981, doi.org/10.1021/acssuschemeng.9b03190.

4. Konwar L. J., Maki-Arvela, P., Thakur A. J., Narendra Kumar, Mikko J.-P. // RSC Adv., 2016, V.6, № 11, doi.org/10.1039/C5RA25716F.

5. Miranda C., Ramirez, A., Sachse A., Pouilloux Y., Urresta J., Pinard L. // Applied Catalysis A, General 580, 2019, P. 167—177, doi.org/10.1016/j.apcata.2019.04.010.

6. Naeimi H., Dadaei M. // RSC Adv. 2015, № 5,P. 76221—76228, doi.org/10.1039/C5RA12185J.

7. Konwar L.J., Mäki-Arvela P., Mikkola J-P. // Chem. Rev. 2019. V. 119. № 22. P. 11576, doi.org/ 10.1021/acs.chemrev.9b00199.

8. Pokonova Yu.V. // Chemistry and Technology of Fuels and Oils, 2013, Vol. 48, No. 6, doi.org/10.1007/s10553-013-0399-7.

9. Xiao Y., Hill J. M. // Chemosphere, 2020, V. 248, P. 125981, doi.org/10.1016/j.chemosphere.2020.125981.

10. Wu M., Wang Y., Wang D.,Tan M.,Li P.,Wu W., Tsubaki N. // J. Porous Mater, 2016, V. 23, P. 263—271, doi.org/10.1007/s10934-015-0078-7.

11. Yakubov M.R., Gryaznov P.I., Abilova G.R., Yakubova S.G., Ivanov V.T., Milordov D.V., Mironov N.A. // Ind. J. Sci. and Tech. 2015. V. 8. №. 36. P.1. doi.org/10.17485/ijst/2015/v8i36/90552.

12. Foss L.E., Shabalin K.V., Musin L.I., Nagornova O.A., Salikhov R.Z., Borisov D.N., Musin R.Z., Yakubov M.R. // Petr. Chem., 2020, V. 60. N. 6. P. 709—715, doi.org/10.1134/S0965544120060055.

13. Ballotin F.C., Silva M.J., Teixeira A.P.C., Lago R.M. // Fuel, 2020, V. 274. P. 117799. doi.org/10.1016/j.fuel.2020.117799.

14. Dey T.K., Bhanja P., Basu P., Ghosh A., Islam Sk. M. // ChemistrySelect, 2019, № 4, P. 14315— 14328, doi.org/10.1002/slct.201902110.

15. Ngaosuwan K., Goodwin J.G., Prasertdham P. // Renewable Energy, 2016, V. 86, P. 262-269, doi.org/10.1016/j.renene.2015.08.010.

16. Barbarossa V., Viscardi R., Maestri G., Maggi R., Gattia D.M., Paris E. // Materials Research Bulletin,2019, V. 113. P. 64—69. doi.org/10.1016/j.materresbull.2019.01.018.

17. Vilcocq L., Castilho P.C., Carvalheiro F., Duarte L.C. // ChemSusChem 2014. V. 7. № 4. P. 1—11. doi.org/10.1002/cssc.201300720.

18. Jalal N.M., Jabur A.R., Hamza M.S., Allami S. // Energy Reports. 2020. № 6. P. 287—298. doi.org/10.1016/j.egyr.2019.11.012.

19. Karakhanov E.A., Gotszyun Ma, Kryazheva I.S., Talanova M.Yu., Terenina M.V. // Russian Chemical Bulletin, International Edition. 2017. V. 66. N. 1. P. 39—46. doi.org/10.1007/s11172-017-1697-8.

20. Brahmayya M., Suen S.-Y. , Dai S.A. // Journal of the Taiwan Institute of Chemical Engineers. 2018. V. 83. P. 174—183. doi.org/10.1016/j.jtice.2017.12.003.

21. Churipard S.R., Kanakikodi K.S., Jose N., Maradur S.P. // ChemistrySelect. 2020. V. 5. N 1. P. 293—299. doi.org/10.1002/slct.201903676.

22. Zhang F., Liang C. Li X. // Green Chem. 2018. V. 20. P. 2057—2063. doi.org/10.1055/s-0037-161048.

23. Mahajan A., Gupta P. // Environmental Chemistry Letters. 2020. V. 18. P. 299—314. doi.org/10.1007/s10311-019-00940-7.

24. Черножуков Н.И. Технология переработки нефти и газа: учебник для вузов в 3 ч.; Ч. 3. М.: Химия, 1978. 424 с.

25. Коскин А.П., Карычева Э.И., Зюзин Д.А., Нартова А.В., Ларичев Ю.В. // Химия в интересах устойчивого развития. 2017. № 1. С. 35—42. doi.org/10.15372/KhUR20170105.

26. Игнатенко В.Я., Костина Ю.В., Антонов С.В., Ильин С.О. // Журнал прикладной химии. 2018. Т. 91. Вып. 11. doi.org/10.1134/S0044461818110130.

27. Wang X., Wu L., Yang P., Song X.-J., Ren H.-X., Peng L., Wang L.-X. // Org. Lett., 2017, V. 19, P. 3051—3054, doi.org/10.1021/acs.orglett.7b01063.


Review

For citations:


Musin L.I., Foss L.E., Shabalin K.V., Nagornova O.A., Borisov D.N., Tutuchkina V.V., Yakubov M.R. Evaluation of the Catalytic Ability of Sulfocationites Based on Petroleum Asphaltenes in the Synthesis of Pyrazolidin-3-one. Kataliz v promyshlennosti. 2020;20(5):359-365. (In Russ.) https://doi.org/10.18412/1816-0387-2020-5-359-365

Views: 524


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)