

Evaluation of the Catalytic Ability of Sulfocationites Based on Petroleum Asphaltenes in the Synthesis of Pyrazolidin-3-one
https://doi.org/10.18412/1816-0387-2020-5-359-365
Abstract
The feasibility of the room temperature catalytic cyclization of hydrazine hydrate and acrylic acid in the presence of an acidic catalyst containing petroleum asphaltenes was explored. The effect of sulfocationite on the synthesis of the target pyrazolidin-3-one was studied. Reaction masses and their distillation residues were analyzed. Gas chromatography–mass spectrometry and electrospray ionization were used to reveal different individual, oligomeric and polymeric products. The most probable structures of the obtained products were proposed.
About the Authors
L. I. MusinRussian Federation
L. E. Foss
Russian Federation
K. V. Shabalin
Russian Federation
O. A. Nagornova
Russian Federation
D. N. Borisov
Russian Federation
V. V. Tutuchkina
Russian Federation
M. R. Yakubov
Russian Federation
References
1. Vries J.G., & Jackson S.D. // Catalysis Science & Technology, 2012, V. 2, N. 10, P. 2009, doi.org/10.1039/C2CY90039D.
2. Kiss F.E., Jovanović, M., Bošković G.C. // Fuel Processing Technology, 2010, V. 91, N. 10, P. 1316-1320. doi.org/10.1016/j.fuproc.2010.05.001.
3. Zhong Y., Zhang, P., Zhu X., Li H., Deng Q., Wang J., Zeng Z., Zou J.-J., Deng S. // ACS Sustainable Chem. Eng. 2019, № 7. P. 14973—14981, doi.org/10.1021/acssuschemeng.9b03190.
4. Konwar L. J., Maki-Arvela, P., Thakur A. J., Narendra Kumar, Mikko J.-P. // RSC Adv., 2016, V.6, № 11, doi.org/10.1039/C5RA25716F.
5. Miranda C., Ramirez, A., Sachse A., Pouilloux Y., Urresta J., Pinard L. // Applied Catalysis A, General 580, 2019, P. 167—177, doi.org/10.1016/j.apcata.2019.04.010.
6. Naeimi H., Dadaei M. // RSC Adv. 2015, № 5,P. 76221—76228, doi.org/10.1039/C5RA12185J.
7. Konwar L.J., Mäki-Arvela P., Mikkola J-P. // Chem. Rev. 2019. V. 119. № 22. P. 11576, doi.org/ 10.1021/acs.chemrev.9b00199.
8. Pokonova Yu.V. // Chemistry and Technology of Fuels and Oils, 2013, Vol. 48, No. 6, doi.org/10.1007/s10553-013-0399-7.
9. Xiao Y., Hill J. M. // Chemosphere, 2020, V. 248, P. 125981, doi.org/10.1016/j.chemosphere.2020.125981.
10. Wu M., Wang Y., Wang D.,Tan M.,Li P.,Wu W., Tsubaki N. // J. Porous Mater, 2016, V. 23, P. 263—271, doi.org/10.1007/s10934-015-0078-7.
11. Yakubov M.R., Gryaznov P.I., Abilova G.R., Yakubova S.G., Ivanov V.T., Milordov D.V., Mironov N.A. // Ind. J. Sci. and Tech. 2015. V. 8. №. 36. P.1. doi.org/10.17485/ijst/2015/v8i36/90552.
12. Foss L.E., Shabalin K.V., Musin L.I., Nagornova O.A., Salikhov R.Z., Borisov D.N., Musin R.Z., Yakubov M.R. // Petr. Chem., 2020, V. 60. N. 6. P. 709—715, doi.org/10.1134/S0965544120060055.
13. Ballotin F.C., Silva M.J., Teixeira A.P.C., Lago R.M. // Fuel, 2020, V. 274. P. 117799. doi.org/10.1016/j.fuel.2020.117799.
14. Dey T.K., Bhanja P., Basu P., Ghosh A., Islam Sk. M. // ChemistrySelect, 2019, № 4, P. 14315— 14328, doi.org/10.1002/slct.201902110.
15. Ngaosuwan K., Goodwin J.G., Prasertdham P. // Renewable Energy, 2016, V. 86, P. 262-269, doi.org/10.1016/j.renene.2015.08.010.
16. Barbarossa V., Viscardi R., Maestri G., Maggi R., Gattia D.M., Paris E. // Materials Research Bulletin,2019, V. 113. P. 64—69. doi.org/10.1016/j.materresbull.2019.01.018.
17. Vilcocq L., Castilho P.C., Carvalheiro F., Duarte L.C. // ChemSusChem 2014. V. 7. № 4. P. 1—11. doi.org/10.1002/cssc.201300720.
18. Jalal N.M., Jabur A.R., Hamza M.S., Allami S. // Energy Reports. 2020. № 6. P. 287—298. doi.org/10.1016/j.egyr.2019.11.012.
19. Karakhanov E.A., Gotszyun Ma, Kryazheva I.S., Talanova M.Yu., Terenina M.V. // Russian Chemical Bulletin, International Edition. 2017. V. 66. N. 1. P. 39—46. doi.org/10.1007/s11172-017-1697-8.
20. Brahmayya M., Suen S.-Y. , Dai S.A. // Journal of the Taiwan Institute of Chemical Engineers. 2018. V. 83. P. 174—183. doi.org/10.1016/j.jtice.2017.12.003.
21. Churipard S.R., Kanakikodi K.S., Jose N., Maradur S.P. // ChemistrySelect. 2020. V. 5. N 1. P. 293—299. doi.org/10.1002/slct.201903676.
22. Zhang F., Liang C. Li X. // Green Chem. 2018. V. 20. P. 2057—2063. doi.org/10.1055/s-0037-161048.
23. Mahajan A., Gupta P. // Environmental Chemistry Letters. 2020. V. 18. P. 299—314. doi.org/10.1007/s10311-019-00940-7.
24. Черножуков Н.И. Технология переработки нефти и газа: учебник для вузов в 3 ч.; Ч. 3. М.: Химия, 1978. 424 с.
25. Коскин А.П., Карычева Э.И., Зюзин Д.А., Нартова А.В., Ларичев Ю.В. // Химия в интересах устойчивого развития. 2017. № 1. С. 35—42. doi.org/10.15372/KhUR20170105.
26. Игнатенко В.Я., Костина Ю.В., Антонов С.В., Ильин С.О. // Журнал прикладной химии. 2018. Т. 91. Вып. 11. doi.org/10.1134/S0044461818110130.
27. Wang X., Wu L., Yang P., Song X.-J., Ren H.-X., Peng L., Wang L.-X. // Org. Lett., 2017, V. 19, P. 3051—3054, doi.org/10.1021/acs.orglett.7b01063.
Review
For citations:
Musin L.I., Foss L.E., Shabalin K.V., Nagornova O.A., Borisov D.N., Tutuchkina V.V., Yakubov M.R. Evaluation of the Catalytic Ability of Sulfocationites Based on Petroleum Asphaltenes in the Synthesis of Pyrazolidin-3-one. Kataliz v promyshlennosti. 2020;20(5):359-365. (In Russ.) https://doi.org/10.18412/1816-0387-2020-5-359-365