Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Methods for the Synthesis of Methacrylic Acid and Methacrylates

https://doi.org/10.18412/1816-0387-2020-5-374-380

Abstract

The review provides an analysis of the literature on the existing processes for obtaining an important organic product – methacrylic acid and its ester – methyl methacrylate. The main methods of their industrial production are the synthesis from acetone and hydrocyanic acid (the acetone cyanohydrin method) and catalytic syntheses from petrochemical raw materials –ethylene, propylene and isobutylene.

About the Authors

L. L. Gogin
Boreskov Institute of Catalysis SB RAS, Novosibirsk
Russian Federation


E. G. Zhizhina
Boreskov Institute of Catalysis SB RAS, Novosibirsk
Russian Federation


Z. P. Pai
Boreskov Institute of Catalysis SB RAS, Novosibirsk
Russian Federation


References

1. I.GlobalMarketAnalysts, Methyl Methacrylate Market trends, http://www.strategyr.com/MarketResearch/MethylMethacrylateMMAMarketTrends.asp, 2016.

2. Степаненко П. // The Chemical Journal. 2002. № 4. P. 50—51.

3. Mahboub M.J.P., Dubois J-L., Cavani F., Rostamizadeh M., Patience G.S. // Chem.Soc.Rev. 2018. Vol. 47. P. 7703-7738.

4. Lebeau J., Efromson J.P., Lynch M.D. // Frontiers in Bioeng. And Biotechn. 2020. Vol. 8. P. 1-10.

5. Kirk-Othmer Encyclopedia of Chemical Technology, 4th Ed. John Wiley&Sons, 2000. Vol. 16. P. 242.

6. EP Patent 0433611, 1994.

7. EP Patent 0941984, 1999.

8. http://corporate.evonik.com/en/investor-relations/newsreports/investor-relations-news/Pages/news-details.aspx?newsid=30165%

9. Kozhevnikov I.V. Catalysis by Polyoxometalates. Chichester: John Wiley, 2002. 202 p.

10. US Patent 4408079, 1983.

11. US Patent 4496770, 1985.

12. US Patent 4433174, 1984.

13. Cao Y.-L., Wang L., Zhou L.-L., Xu B.H., Diao Y.-Y., Zhang S.-J. // J. of Industrial and Eng. Chem. 2018. Vol. 65. P. 254-263.

14. Cao Y.-L., Wang L., Xu B.H., Zhang S.-J. // Chemical Engineering Journal. 2018. Vol. 334. P. 1657—1667.

15. Yasuda S., Hirata J., Kanno M., Ninomiya W., Otomo R., Kamiya Y. // Appl. Cat. A: General. 2019. Vol. 570. P. 164-172.

16. US Patent 3835185, 1974.

17. US Patent 4801571, 1989.

18. US Patent 4599144, 1986.

19. US Patent 474810, 1988.

20. US Patent 4410729, 1983.

21. Drent E., Amoldy P., Budzelaar P.H.M. // J. Organomet. Chem. 1993. Vol. 455. P. 247-253.

22. US Patent 5158921, 1992.

23. US Patent 5099062, 1992.

24. US Patent 4739109, 1988.

25. EP Patent 279477, 1988.

26. EP Patent 271144, 1988.

27. US Patent 3812175 , 1974.

28. US Patent 4354044, 1982.

29. US Patent 5166119, 1992.

30. EP Patent 450596, 1991.

31. EP Patent 58046, 1982.

32. EP Patent 361372, 1990.

33. US Patent 4532083, 1985.

34. US Patent 4473506, 1984.

35. Жизневский В.М., Гуменецкий В.В., Бажан Л.В., Майкова С.В. // Катализ и нефтехимия. 2001. № 8. C. 41—46.

36. Далин М.А., Мехтиев С.И., Расулбекова Т.И. // Докл. АН СССР. 1964. Т. 154. № 4. С. 854—856.

37. Cavani F. //Cat. Today. 2010. Vol. 157. P. 8-15.

38. Cavani F., Mezzogori R., Pigamo A., Trifiro F. // Chemistry. 2000. Vol. 3. P. 523—531.

39. Sun M., Zhang J., Putaj P., Caps V., Lefebvre F., Pelletier J., Basset J.-M. // Chem.Rev.2014. Vol.114. P.981-1019.

40. Mizuno N., Yahiro H. // J. Phys. Chem. B. 1998. Vol. 102. P. 437-443.

41. Knapp C., Ui T., Nagai K., Mizuno N. // Catal. Today. 2001. Vol. 71. P. 111-119.

42. Pyo S-H., Dishisha T., Dayankac S., Gerelsaikhan J., Lundmark S., Rehnberg N., Hatti-Kaul R. // Green Chemistry. 2012. Vol. 14. № 7. P. 1942-1948.

43. Mahboub M.J.D., Wright J., Boffito D.C., Dubois J-L., Patience G.S. // Applied Catalysis A: General. 2018. Vol. 554. P. 105—116.

44. US Patent 8241877, 2009 .

45. Yu A.-Q., Juwono N.K.P., Foo J. L., Leong S.S.J., Chang M.W. // Metabolic Eng. 2016. Vol. 34. P. 36—43. doi: 10.1016/j.ymben.2015.12.005.

46. Xiong M., Yu P., Wang J., Zhang K. // Aims Energy. 2015. № 2. P. 60—74. doi: 10.3934/bioeng.2015.2.60.

47. Macho V., Králik M., Chromá V., Cingelová J. and Mikulec J. // Petroleum and Coal. 2004. Vol. 46. P. 69—80.

48. Hevekerl A., Kuenz A., Vorlop K.-D. // Appl. Microbiol. Biotechnol. 2014. Vol. 98. P. 10005—10012. doi: 10.1007/s00253-014-6047-2.

49. Kuenz A., Krull S. // Appl. Microbiol. Biotechnol. 2018. Vol. 102. P. 3901—3914. doi: 10.1007/s00253-018-8895-7.

50. Tehrani H. H., Becker J., Bator I., Saur K., Meyer S., Lóia A.C.R. et al. // Biotechnol. Biofuels. 2019. Vol. 12. P. 1—11. doi: 10.1186/s13068-019-1605-6.

51. Thakur N., Pandey M. D., Pandey R. // J. of Solid State Chem. 2019. Vol. 280. P. 120987-120995.

52. Bohre A., Novak U., Grilc M., Likozar B. // Molecular Catalysis. 2019. Vol. 476. P. 110520-110526.

53. Bohre A., Hočevar B., Grilc M., Likozar B. // Appl. Cat. B: Env. 2019. Vol. 256. P. 117889-117899.

54. US Patent 0094438, 2015.


Review

For citations:


Gogin L.L., Zhizhina E.G., Pai Z.P. Methods for the Synthesis of Methacrylic Acid and Methacrylates. Kataliz v promyshlennosti. 2020;20(5):374-380. (In Russ.) https://doi.org/10.18412/1816-0387-2020-5-374-380

Views: 2761


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)