Preview

Kataliz v promyshlennosti

Advanced search

Comparison of the efficiency of plant materials bioconversion processes using biocatalysts based on enzyme preparations Trichoderma and Penicillium Verruculosum

Abstract

There is comparative study of the effectiveness of six commercial biocatalysts based on enzyme preparations derived from fungus of the genus Trichoderma as a producer (Cellic CTec1, Cellic CTec2, Accelerase 1000, Accelerase 1500, Accelerase XY, Accelerase DUET), and laboratory biocatalysts based on enzyme preparations derived from the fungus Penicillium verruculosum, for the hydrolysis of four types of plant cellulose material (steam pretreated corn stalks and bagasse, crushed timber pine and aspen), also microcrystalline cellulose. The activity of biocatalysts relative to various substrates and the dependence of the depth of exhaustive hydrolysis of plant material from the dosage of these biocatalysts were determined. It is shown that biocatalysts derived from P. verruculosum strains are competitive with the widely used commercial biocatalyst based on Trichoderma strains when they scale biotechnological processes bioconversion of renewable resources.

About the Authors

A. V. Chekushina
Институт биохимии им. А.Н. Баха РАН, г. Москва
Russian Federation


G. S. Dotsenko
Институт биохимии им. А.Н. Баха РАН, г. Москва Химический факультет МГУ им. М.В. Ломоносова, г. Москва
Russian Federation


A. P. Sinitsyn
Институт биохимии им. А.Н. Баха РАН, г. Москва Химический факультет МГУ им. М.В. Ломоносова, г. Москва
Russian Federation


References

1. Ragauskas A.J., Williams C.K., Davison B.H., Britovsek G., Cairney J., Eckert C.A., Frederick W.J., Hallett J.P., Leak D.J., Liotta C.L., Mielenz J.R., Murphy R., Templer R., Tschaplinski T. The path forward for biofuels and biomaterials // Science. 2006. Vol. 311. P. 484—489.

2. Jorgensen H., Kristensen J.B., Felby C. Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities // Biofuels, Bioproducts and Biorefining. 2007. Vol. 1. P. 119—134.

3. Sims R.E.H., Mabee W., Saddler J.N., Taylor M. An overview of second generation biofuel technologies // Bioresour. Technol. 2010. Vol. 101. P. 1570—1580.

4. Merino S.T., Cherry J. Progress and challenges in enzyme development for biomass utilization // Adv. Biochem. Eng. Biotechnol. 2007. Vol. 108. P. 95—120.

5. Margeot A., Hahn-Hagerdal B., Edlund M., Slade R., Monot F. New improvements for lignocellulosic ethanol // Curr. Opin. Biotechnol. 2009. Vol. 20. P. 372—380.

6. Nieves R.A., Ehrman C.I., Adney W.S., Elander R.T., Himmel M.E. Technical communication: survey and analysis of commercial cellulase preparations suitable for biomass conversion to ethanol // World J. Microbiol. Biotechnol. 1998. Vol. 14. P. 301—304.

7. Kubicek C.P., Mikus M., Schuster A., Schmoll M., Seiboth B. Metabolic engineering strategies for the improvement of cellulase production by Hypocrea jecorina // Biotechnol. Biofuels. 2009. Vol. 2. P. 19—33.

8. Skomarovsky A.A., Gusakov A.V., Okunev O.N., Solov’eva I.V., Bubnova T.V., Kondrat’eva E.G., Synitsyn A.P.

9. Studies of hydrolytic activity of enzyme preparations of Penicillium and Trichoderma fungi // Appl. Biochem. Microbiol. 2005. Vol. 41. P. 182—184.

10. Martins L.F., Kolling D., Camassola M., Dillon A.J., Ramos L.P. Comparison of Penicillium echinulatum and

11. Trichoderma reesei cellulases in relation to their activity against various cellulosic substrates // Bioresour. Technol. 2008. Vol. 99. P. 1417—1424.

12. Ikeda Y., Hayashi H., Okuda N., Park E.Y. Efficient cellulase production by the filamentous fungus Acremonium cellulolyticus // Biotechnol. Prog. 2007. Vol. 23. P. 333—338.

13. Fujii T., Fang X., Inoue H., Murakami K., Sawayama S. Enzymatic hydrolyzing performance of Acremonium cellulolyticus and Trichoderma reesei against three lignocellulosic materials // Biotechnol. Biofuels. 2009. Vol. 2. P. 24—32.

14. Gusakov A.V., Salanovich T.N., Antonov A.I., Ustinov B.B., Okunev O.N., Burlingame R., Emalfarb M., Baez M., Sinitsyn A.P. Design of highly efficient cellulase mixtures for enzymatic hydrolysis of cellulose // Biotechnol. Bioeng. 2007. Vol. 97. P. 1028—1038.

15. Синицын А.П., Черноглазов В.М., Гусаков А.В. // Методы исследования и свойства целлюлолитических ферментов. М.: ВИНИТИ, 1990. Т. 25. C. 30—37.

16. Ghose T.K. Measurement of cellulase activities // Pure Appl. Chem. 1987. Vol. 59. P. 257—268.

17. Справочник биохимика / Досон Р. и др. М.: Мир, 1991. 544 с.

18. Clarke A.J. Biodegradation of cellulose. Enzymology and biotechnology. Lancaster: Technomic Publishing Company Inc., 1997. 272 p.

19. Teeri T.T. Crystalline cellulose degradation: new insight into the function of cellobiohydrolases // Trends Biotechnol. 1997. Vol. 15. P. 160—167.

20. Рабинович М.Л., Черноглазов В.М., Клесов А.А. Классификация целлюлаз, их распространенность, множественные формы и механизмы действия // Биоконверсия целлюлозы: микробиология и биохимия. Итоги науки и техники. Сер.: Биотехнология. М.: ВИНИТИ, 1988. Т. 11. C. 8—149.

21. Woods T.M., McCrae S.I., Bhat K.M. The mechanism of fungal cellulase action. Synergism between components of Penicillium pinophilum cellulase in solubilizing hydrogen bond-ordered cellulose // Biochem. J. 1989. Vol. 260. P. 37—43.

22. Garcia E., Johnston D.B., Whitaker J.R., Shoemaker S.P. Assessment of endo-1,4-β-D-glucanase activity by a rapid colorimetric assay using disodium 2,2’-bicinchoninate // J. Food Biochem. 1993. Vol. 17. P. 135—145.

23. Hösel W., Conn E.E. The aglycone specificity of plant β-glycosidases // Trends Biochem. Sci. 1982. Vol. 7, № 6. P. 219—221.

24. Conn E.E. β-Glucosidases in plants: substrate specificity // β-Glucosidases: Biochemistry and molecular biology / Ed. A. Esen; ACS Symposium Series, 533. Washington: American chemical society, 1993. P. 15—26.

25. Schülein M. Enzymatic properties of cellulases from Humicola insolens // J. Biotechnol. 1997. Vol. 57.

26. P. 71—81.

27. Tuohy M.G., Walsh D.J., Murray P.G., Claeyssens M., Cuffe M.M., Savage A.V., Coughlan M.P. Kinetic parameters and mode of action of the cellobiohydrolases produced by Talaromyces emersonii // Biochim. Biophys. Acta. 2002. Vol. 1596. P. 366—380.

28. Polizeli M.L., Rizzatti A.C.S., Monti R., Terenzy H.F., Jorge J.A., Amorim D.S. Xylanases from fungi: properties and industrial applications // Appl. Microbiol. Biotechnol. 2005. Vol. 67. P. 577—591.

29. Beg Q.K., Kapoor M., Mahajan L., Hoondal G.S. Microbial xylanases and their industrial applications: a review // Appl. Microbiol. Biotechnol. 2001. Vol. 56. Р. 326–338.


Review

For citations:


Chekushina A.V., Dotsenko G.S., Sinitsyn A.P. Comparison of the efficiency of plant materials bioconversion processes using biocatalysts based on enzyme preparations Trichoderma and Penicillium Verruculosum. Kataliz v promyshlennosti. 2012;(6):68-76. (In Russ.)

Views: 776


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)