Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

The Production of Liquid Fuel Products by the Catalytic Hydroliquefaction of Sapropels Using Nickel and Nickel-Tungsten Catalysts

https://doi.org/10.18412/1816-0387-2021-6-413-423

Abstract

Ni catalysts with the carbon-mineral supports obtained from sapropel were synthesized and studied in the catalytic hydroliquefaction of sapropel. It was found that catalysts with the supports obtained from mineral sapropel are more active as compared to those based on organic sapropel; therewith, bimetallic NiW catalysts showed a higher activity than monometallic nickel, irrespective of the support nature. The conversion of the organic matter of sapropel and the composition of liquid products are affected by both the features of supported metal and the composition of support. The liquid products of hydroliquefaction contain mostly the nitrogen- and oxygen-containing compounds. The maximum yield of С5-С21 hydrocarbons is achieved for the catalysts with the supports obtained from mineral sapropel. The composition of the liquid products of sapropel hydroliquefaction is similar to that of biofuels obtained from other renewable sources; such products can be introduced in the known schemes of further processing.

About the Authors

E. N. Terekhova
Center of New Chemical Technologies BIC SB RAS, Omsk
Russian Federation


O. B. Belskaya
Center of New Chemical Technologies BIC SB RAS, Omsk
Russian Federation


References

1. Yan J., Bai Z., Hao P., Bai J., Li W. // Fuel. 2017. V. 199. Р. 598–605. https://doi.org/10.1016/j.fuel.2017.03.029

2. Li Q., Liu D., Song L., Hou X., Wu Ch., Yan Z. // Industrial Crops & Products. 2018. V. 113. P. 157–166. https://doi.org/10.1016/j.indcrop.2018.01.033

3. Shui H., Xu H., Zhou Y., Shui T., Pan Ch., Wang Z., Lei Z., Ren S., Kang S., Xu Ch. // Fuel. 2017. V. 200. P. 576–582. https://doi.org/10.1016/j.fuel.2017.03.048

4. Шарыпов В.И., Береговцова Н.Г., Барышников С.В., Таран О.П., Страховенко В.Д., Кузнецов Б.Н. // Химия растительного сырья. 2013. № 4. С. 213–218.

5. Scarsella M., De Caprariis B., Damizia M., De Filippis P. // Biomass and Bioenergy. 2020. V. 140. 105662. https://doi.org/10.1016/j.biombioe.2020.105662

6. Wang Z., Xue W., Zhu J., Chen E., Pan Ch., Kang Sh., Lei Z., Ren S., Shui H. // Fuel. 2016. V. 181. P. 711–717. https://doi.org/10.1016/j.fuel.2016.05.042

7. Wang Z., Shui H., Zhang D., Gao J. // Fuel. 2007. V. 86. № 5–6. P. 835–842. https://doi.org/10.1016/j.fuel.2006.09.018

8. Li Q., Hu X., Liu D., Song L., Yan Z., Li M., Liu Q. // Journal of the Energy Institute. 2020. V. 93. № 4. P. 1705–1712. https://doi.org/10.1016/j.joei.2020.03.001

9. Lia R., Li B., Kai X., Yang T. // Fuel Processing Technology. 2017. V. 167. P. 363-370. https://doi.org/10.1016/j.fuproc.2017.07.013

10. Baloch H.A., Siddiqui M.T.H., Nizamuddin S., Riaz S., Haris M., Mubarak N.M., Griffin G.J., Srinivasan M.P. // Process Safety and Environmental Protection. 2021. V. 148. P. 1060–1069. https://doi.org/10.1016/j.psep.2021.02.015

11. Xu Ch., Etcheverry T. // Fuel. 2008. V. 87. № 3. P. 335–345. https://doi.org/10.1016/j.fuel.2007.05.013

12. Barr M.R., Volpe R., Kandiyoti R. // Chemical Engineering Science: X. 2021. V. 10. 100090. https://doi.org/10.1016/j.cesx.2021.100090

13. https://geographyofrussia.com/ozernye-mestorozhdeniya-sapropelya/

14. Shtin S.M. Lake sapropels and their integrated harnessing. MSGU, Moscow, 2005. 373 p.

15. Galkin M.V., Samec J.S.M. // ChemSusChem. 2016. V. 9. № 13. P. 1544-1558. https://doi.org/10.1002/cssc.201600237

16. Taran O.P., Gromov N.V., Parmon V.N. // Sustainable Catalysis for Biorefineries / eds. Frusteri, F., Aranda, D. Bonura, G. The Royal Society of Chemistry. 2018. P. 25–64. https://doi.org/10.1039/9781788013567-00025.

17. Luo H., Klein I. M., Jiang Y., Zhu H., Liu B., Kenttämaa H. I.Abu-Omar M. M. // ACS Sustainable Chemistry & Engineering. 2016. V. 4. №. 4. P. 2316–2322. https://doi.org/10.1021/acssuschemeng.5b01776

18. Chikunov A.S., Shashkov M.V., Pestunov A.V., Kazachenko A.S., Mishenko T.I., Taran O.P. // Journal of Siberian Federal University-Chemistry. 2018. V. 11. №. 1. P. 131–150. https://doi.org/10.17516/1998-2836-0064

19. Smirnov A.A., Khromova S.A., Ermakov D.Y., Bulavchenko O.A., Saraev A.A., Aleksandrov P.V., Kaichev V.V., Yakovlev V.A. // Applied Catalysis A: General. 2016. V. 514. P. 224–234. https://doi.org/10.1016/j.apcata.2016.01.025

20. Song Y., Seo G., Ihm S.-K. // Applied Catalysis A: General. 1992. V. 83. I. 1. P. 75–86. https://doi.org/10.1016/0926-860X(92)80027-A

21. Терехова Е.Н., Гуляева Т.И., Тренихин М.В., Муромцев И.В., Непомнящий А.А., Бельская О.Б. // Кинетика и катализ. 2018. Т. 59. № 2. С. 260–268. https://doi.org/10.7868/s0453881118020156

22. Terekhova E.N., Belskaya O.B. // AIP Conference Proceedings. 2017. V.1876. 020010:1-5. https://doi.org/10.1063/1.4998830

23. Terekhova E.N., Belskaya O.B. // AIP Conference Proceedings. 2019. V.2141. 020014:1-6. https://doi.org/10.1063/1.5122033

24. Терехова Е.Н., Бельская О.Б. // Журнал прикладной химии. 2021. Т. 94. № 2. С. 240–247. https://doi.org/10.31857/S0044461821020122

25. Гордеев А.В., Водянкина О.В. // Нефтехимия. 2014. Т. 54. № 6. С. 463–470. https://doi.org/10.7868/S0028242114060045

26. Deliyannib E., Bandosza T.J. // Journal of Hazardous Materials. 2011. V. 186. P.667–674. https://doi.org/10.1016/j.jhazmat.2010.11.055

27. Тамаркина Ю. В., Кучеренко В. А., Шендрик Т. Г. // Химия твердого топлива. 2014. № 4. С. 38–46. https://doi.org/10.7868/S0023117714040112

28. Park J., Regalbuto J.R. // J. Colloid Interface Sci. 1995. V. 175. I. 1. P. 239–252. https://doi.org/10.1006/jcis.1995.1452

29. Boehm H.P. // Carbon. 1994. V. 32. №. 5. P. 759-769. https://doi.org/10.1016/0008-6223(94)90031-0

30. Barton D.G., Soled S.L., Meitzner G.D., Fuentes G.A., Iglesia E. // J. Catal. 1999. Vol. 181. P. 57–72. https://doi.org/10.1006/jcat.1998.2269

31. Busto M., Benítez V.M., Vera C.R., Grau J.M., Yori J.C. // Appl. Catal. A Gen. 2008. Vol. 347. P. 117–125. https://doi.org/10.1016/j.apcata.2008.06.003

32. Cortés J.C., Rodríguez C., Molina R., Moreno S. // Fuel. 2021. V. 295. Р. 120612. https://doi.org/10.1016/j.fuel.2021.120612

33. Jina Sh., Xiao Z., Li Ch., Chen X., Wang L., Xing J., Li W., Liang Ch. // Catal. Today. 2014. V. 234. P. 125–132. https://dx.doi.org/10.1016/j.cattod.2014.02.014

34. Fang H., Zheng J., Luo X., Du J., Roldan A., Leoni S., Yuan Y. // Appl. Cat. A: 2017. V. 529. P. 20–31. https://doi.org/10.1016/j.apcata.2016.10.011

35. Ramı́rez J., Gutiérrez-Alejandre A. // Catalysis Today. 1998. V. 43. I. 1–2. P. 123–133. https://doi.org/10.1016/S0920-5861(98)00141-2

36. Zuo D., Vrinat M., Nie H., Maugé F., Shi Y., Lacroix M., Li D. // Catalysis Today. 2004. V. 93–95. P. 751–760. https://doi.org/10.1016/j.cattod.2004.06.078

37. Das D.D., Schnitzer M.I., Monreal C.M., Mayer P. // Bioresource Technology. 2009. V. 100. I. 24. P. 6524–6532. https://doi.org/10.1016/j.biortech.2009.06.104

38. Kim K.H., Eom I.Y., Lee S.M., Choi D., Yeo H., Choi I.-G., Choi J.W. // Journal of Analytical and Applied Pyrolysis. 2011. V. 92. I. 1. P. 2–9. https://doi.org/10.1016/j.jaap.2011.04.002


Review

For citations:


Terekhova E.N., Belskaya O.B. The Production of Liquid Fuel Products by the Catalytic Hydroliquefaction of Sapropels Using Nickel and Nickel-Tungsten Catalysts. Kataliz v promyshlennosti. 2021;21(6):413-423. (In Russ.) https://doi.org/10.18412/1816-0387-2021-6-413-423

Views: 333


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)