

The Production of Liquid Fuel Products by the Catalytic Hydroliquefaction of Sapropels Using Nickel and Nickel-Tungsten Catalysts
https://doi.org/10.18412/1816-0387-2021-6-413-423
Abstract
Ni catalysts with the carbon-mineral supports obtained from sapropel were synthesized and studied in the catalytic hydroliquefaction of sapropel. It was found that catalysts with the supports obtained from mineral sapropel are more active as compared to those based on organic sapropel; therewith, bimetallic NiW catalysts showed a higher activity than monometallic nickel, irrespective of the support nature. The conversion of the organic matter of sapropel and the composition of liquid products are affected by both the features of supported metal and the composition of support. The liquid products of hydroliquefaction contain mostly the nitrogen- and oxygen-containing compounds. The maximum yield of С5-С21 hydrocarbons is achieved for the catalysts with the supports obtained from mineral sapropel. The composition of the liquid products of sapropel hydroliquefaction is similar to that of biofuels obtained from other renewable sources; such products can be introduced in the known schemes of further processing.
About the Authors
E. N. TerekhovaRussian Federation
O. B. Belskaya
Russian Federation
References
1. Yan J., Bai Z., Hao P., Bai J., Li W. // Fuel. 2017. V. 199. Р. 598–605. https://doi.org/10.1016/j.fuel.2017.03.029
2. Li Q., Liu D., Song L., Hou X., Wu Ch., Yan Z. // Industrial Crops & Products. 2018. V. 113. P. 157–166. https://doi.org/10.1016/j.indcrop.2018.01.033
3. Shui H., Xu H., Zhou Y., Shui T., Pan Ch., Wang Z., Lei Z., Ren S., Kang S., Xu Ch. // Fuel. 2017. V. 200. P. 576–582. https://doi.org/10.1016/j.fuel.2017.03.048
4. Шарыпов В.И., Береговцова Н.Г., Барышников С.В., Таран О.П., Страховенко В.Д., Кузнецов Б.Н. // Химия растительного сырья. 2013. № 4. С. 213–218.
5. Scarsella M., De Caprariis B., Damizia M., De Filippis P. // Biomass and Bioenergy. 2020. V. 140. 105662. https://doi.org/10.1016/j.biombioe.2020.105662
6. Wang Z., Xue W., Zhu J., Chen E., Pan Ch., Kang Sh., Lei Z., Ren S., Shui H. // Fuel. 2016. V. 181. P. 711–717. https://doi.org/10.1016/j.fuel.2016.05.042
7. Wang Z., Shui H., Zhang D., Gao J. // Fuel. 2007. V. 86. № 5–6. P. 835–842. https://doi.org/10.1016/j.fuel.2006.09.018
8. Li Q., Hu X., Liu D., Song L., Yan Z., Li M., Liu Q. // Journal of the Energy Institute. 2020. V. 93. № 4. P. 1705–1712. https://doi.org/10.1016/j.joei.2020.03.001
9. Lia R., Li B., Kai X., Yang T. // Fuel Processing Technology. 2017. V. 167. P. 363-370. https://doi.org/10.1016/j.fuproc.2017.07.013
10. Baloch H.A., Siddiqui M.T.H., Nizamuddin S., Riaz S., Haris M., Mubarak N.M., Griffin G.J., Srinivasan M.P. // Process Safety and Environmental Protection. 2021. V. 148. P. 1060–1069. https://doi.org/10.1016/j.psep.2021.02.015
11. Xu Ch., Etcheverry T. // Fuel. 2008. V. 87. № 3. P. 335–345. https://doi.org/10.1016/j.fuel.2007.05.013
12. Barr M.R., Volpe R., Kandiyoti R. // Chemical Engineering Science: X. 2021. V. 10. 100090. https://doi.org/10.1016/j.cesx.2021.100090
13. https://geographyofrussia.com/ozernye-mestorozhdeniya-sapropelya/
14. Shtin S.M. Lake sapropels and their integrated harnessing. MSGU, Moscow, 2005. 373 p.
15. Galkin M.V., Samec J.S.M. // ChemSusChem. 2016. V. 9. № 13. P. 1544-1558. https://doi.org/10.1002/cssc.201600237
16. Taran O.P., Gromov N.V., Parmon V.N. // Sustainable Catalysis for Biorefineries / eds. Frusteri, F., Aranda, D. Bonura, G. The Royal Society of Chemistry. 2018. P. 25–64. https://doi.org/10.1039/9781788013567-00025.
17. Luo H., Klein I. M., Jiang Y., Zhu H., Liu B., Kenttämaa H. I.Abu-Omar M. M. // ACS Sustainable Chemistry & Engineering. 2016. V. 4. №. 4. P. 2316–2322. https://doi.org/10.1021/acssuschemeng.5b01776
18. Chikunov A.S., Shashkov M.V., Pestunov A.V., Kazachenko A.S., Mishenko T.I., Taran O.P. // Journal of Siberian Federal University-Chemistry. 2018. V. 11. №. 1. P. 131–150. https://doi.org/10.17516/1998-2836-0064
19. Smirnov A.A., Khromova S.A., Ermakov D.Y., Bulavchenko O.A., Saraev A.A., Aleksandrov P.V., Kaichev V.V., Yakovlev V.A. // Applied Catalysis A: General. 2016. V. 514. P. 224–234. https://doi.org/10.1016/j.apcata.2016.01.025
20. Song Y., Seo G., Ihm S.-K. // Applied Catalysis A: General. 1992. V. 83. I. 1. P. 75–86. https://doi.org/10.1016/0926-860X(92)80027-A
21. Терехова Е.Н., Гуляева Т.И., Тренихин М.В., Муромцев И.В., Непомнящий А.А., Бельская О.Б. // Кинетика и катализ. 2018. Т. 59. № 2. С. 260–268. https://doi.org/10.7868/s0453881118020156
22. Terekhova E.N., Belskaya O.B. // AIP Conference Proceedings. 2017. V.1876. 020010:1-5. https://doi.org/10.1063/1.4998830
23. Terekhova E.N., Belskaya O.B. // AIP Conference Proceedings. 2019. V.2141. 020014:1-6. https://doi.org/10.1063/1.5122033
24. Терехова Е.Н., Бельская О.Б. // Журнал прикладной химии. 2021. Т. 94. № 2. С. 240–247. https://doi.org/10.31857/S0044461821020122
25. Гордеев А.В., Водянкина О.В. // Нефтехимия. 2014. Т. 54. № 6. С. 463–470. https://doi.org/10.7868/S0028242114060045
26. Deliyannib E., Bandosza T.J. // Journal of Hazardous Materials. 2011. V. 186. P.667–674. https://doi.org/10.1016/j.jhazmat.2010.11.055
27. Тамаркина Ю. В., Кучеренко В. А., Шендрик Т. Г. // Химия твердого топлива. 2014. № 4. С. 38–46. https://doi.org/10.7868/S0023117714040112
28. Park J., Regalbuto J.R. // J. Colloid Interface Sci. 1995. V. 175. I. 1. P. 239–252. https://doi.org/10.1006/jcis.1995.1452
29. Boehm H.P. // Carbon. 1994. V. 32. №. 5. P. 759-769. https://doi.org/10.1016/0008-6223(94)90031-0
30. Barton D.G., Soled S.L., Meitzner G.D., Fuentes G.A., Iglesia E. // J. Catal. 1999. Vol. 181. P. 57–72. https://doi.org/10.1006/jcat.1998.2269
31. Busto M., Benítez V.M., Vera C.R., Grau J.M., Yori J.C. // Appl. Catal. A Gen. 2008. Vol. 347. P. 117–125. https://doi.org/10.1016/j.apcata.2008.06.003
32. Cortés J.C., Rodríguez C., Molina R., Moreno S. // Fuel. 2021. V. 295. Р. 120612. https://doi.org/10.1016/j.fuel.2021.120612
33. Jina Sh., Xiao Z., Li Ch., Chen X., Wang L., Xing J., Li W., Liang Ch. // Catal. Today. 2014. V. 234. P. 125–132. https://dx.doi.org/10.1016/j.cattod.2014.02.014
34. Fang H., Zheng J., Luo X., Du J., Roldan A., Leoni S., Yuan Y. // Appl. Cat. A: 2017. V. 529. P. 20–31. https://doi.org/10.1016/j.apcata.2016.10.011
35. Ramı́rez J., Gutiérrez-Alejandre A. // Catalysis Today. 1998. V. 43. I. 1–2. P. 123–133. https://doi.org/10.1016/S0920-5861(98)00141-2
36. Zuo D., Vrinat M., Nie H., Maugé F., Shi Y., Lacroix M., Li D. // Catalysis Today. 2004. V. 93–95. P. 751–760. https://doi.org/10.1016/j.cattod.2004.06.078
37. Das D.D., Schnitzer M.I., Monreal C.M., Mayer P. // Bioresource Technology. 2009. V. 100. I. 24. P. 6524–6532. https://doi.org/10.1016/j.biortech.2009.06.104
38. Kim K.H., Eom I.Y., Lee S.M., Choi D., Yeo H., Choi I.-G., Choi J.W. // Journal of Analytical and Applied Pyrolysis. 2011. V. 92. I. 1. P. 2–9. https://doi.org/10.1016/j.jaap.2011.04.002
Review
For citations:
Terekhova E.N., Belskaya O.B. The Production of Liquid Fuel Products by the Catalytic Hydroliquefaction of Sapropels Using Nickel and Nickel-Tungsten Catalysts. Kataliz v promyshlennosti. 2021;21(6):413-423. (In Russ.) https://doi.org/10.18412/1816-0387-2021-6-413-423