Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Catalytic Methods for the Production of Sugar Esters

https://doi.org/10.18412/1816-0387-2021-6-424

Abstract

Nowadays, Sugar esters (SEs) have become the focus of researchers due to their biocompatibility and extensive industrial applications as surfactants. This trend provides new methods and opportunities for the development of green synthetic chemistry. Taking the above into consideration, a critical review presented in this work emphasized the efficiency of catalyzing the synthesis of SEs with minimal hazardous by-products. These catalytic media have been employed with various impacts involving chemical, biological, and other catalytic materials. Chemical methods have been reported to show limitations in terms of preparation and bio-compatibility. To solve these shortcomings, therefore, other technologies have been adopted; ionic liquids (eutectic solvents), chemo-enzymatic systems and chemo-enzymatic systems on a catalytic surface. The use of chemo-enzymatic systems on catalytic surfaces has proved to be suitable in solving biocompatibility and stability problems and correspondingly increasing the yield of esters formed. Therefore, finding an improved catalytic surface, and the sustainable optimal reaction conditions for enzymes will be vital to improving sugar ester conversion. This study highlights the different catalytic advances employed in the esterification of SEs.

About the Authors

M. A. Otache
Department of Industrial Chemistry, Michael and Cecilia Ibru University, Ughelli, Delta State
Nigeria


R. U. Duru
Department of Pure and Industrial Chemistry, University of Port Harcourt, Port Harcourt, Rivers State
Nigeria


O. Achugasim
Department of Pure and Industrial Chemistry, University of Port Harcourt, Port Harcourt, Rivers State
Nigeria


O. J. Abayeh
Department of Pure and Industrial Chemistry, University of Port Harcourt, Port Harcourt, Rivers State
Nigeria


References

1. Neta N.S., Teixeira J.A., Rodrigues L.R. // Crit. Rev. Food Sci. Nutr. 2015. Vol. 55. P. 595–610. DOI: 10.1080/10408398.2012.667461.

2. Zhang X., Song F., Taxipalati M., Wei W., Feng F. // PLoS ONE. 2014. Vol. 9. P. e114845. DOI: 10.1371/journal.pone.0114845.

3. Moldes A.B., Rodríguez-López L., Rincón-Fontán M., López-Prieto A., Vecino X., Cruz J. M. // Int. J. Mol. Sci. 2021. Vol. 22. P. 2371. DOI: 10.3390/ijms22052371.

4. Pyo S.-H., Chen J., Ye R., Hayes D.G. // Biobased surfactants: synthesis, properties, and applications. 2nd ed. Academic Press and AOCS Press, Elsevier, 2019. P. 325–363. DOI: 10.1016/b978-0-12-812705-6.00010-1.

5. Morita T., Fukuoka T., Imura T., Kitamoto D. // Reference module in chemistry, molecular sciences and chemical engineering. 2016. DOI: 10.1016/b978-0-12-409547-2.11565-3.

6. Hayes D.G., Smith G.A. // Biobased surfactants: synthesis, properties, and applications. 2nd ed. Academic Press and AOCS Press, Elsevier, 2019. P. 3–38. DOI: 10.1016/b978-0-12-812705-6.00001-0.

7. El-Baz H.A., Elazzazy A.M., Saleh T.S., Dourou M., Mahyoub J.A., Baeshen M.N., Madian H.R., Aggelis G. // Appl. Sci. 2021. Vol. 11. P. 2700. DOI: 10.3390/app11062700.

8. Sutili F. K., Ruela H.S., Nogueira D.D.O., Ivana C.R.L., Leandro S.M.M., Rodrigo De Souza O.M.A. // Sus. Chem Proc. 2015. Vol. 3. P. 6. DOI: 10.1186/s40508-015-0031-8.

9. Turhanen P.A., Leppänen J., Vepsäläinen J.J. // ACS Omega. 2019. Vol. 4. P. 8974–8984. DOI: 10.1021/acsomega.9b00790.

10. Vafakish B., Wilson L.D. // Polysaccharides. 2021. Vol. 2, P. 168–186. DOI: 10.3390/polysaccharides2010012.

11. Sucrose ester market (2021). Sucrose Esters Market by Application (Food, Personal Care Products, Detergents & Cleaners), Form (Powder, Liquid, Pellet), and Region (North America, Europe, Asia Pacific, South America, Rest of the World) - Global Forecast to 2025. Retrieved September 21, 2021, from https://www.marketsandmarkets.com/Market-Reports/sucrose-esters-market-191170937.html.

12. Kong P., Aroua M., Wan Daud W. // Rev. Chem. Eng. 2015. Vol. 31. P. 437–451. DOI: 10.1515/revce-2015-0004.

13. Kong P.S., Pérès Y., Wan Daud W.M.A., Cognet P., Aroua M.K. // Front. Chem. 2019. Vol. 7. P. 205. DOI: 10.3389/fchem.2019.00205.

14. Speight J.G. The Refinery of the Future. 2nd Edition. — Gulf Professional Publishing, 2020. P. 43–84. DOI: 10.1016/b978-0-12-816994-0.00002-6.

15. Okwundu O.S., El-Shazly A.H., Elkady M. // SN Appl. Sci. 2019. Vol. 1. P. 140. DOI: 10.1007/s42452-018-0145-1.

16. Ranade V.V. // J. Chem Sci. 2014. Vol. 126. P. 341–351. DOI: 10.1007/s12039-014-0589-9.

17. Sievers C., Noda Y., Qi L., Albuquerque E. M., Rioux R.M., Scott S.L. // ACS Catalysis. 2016. Vol. 6. P. 8286–8307. DOI: 10.1021/acscatal.6b02532.

18. Van Leeuwen P.W.N.M. // Ref. Mod. Chem. Mol. Sci. Chem. Eng. 2016. DOI: 10.1016/b978-0-12-409547-2.11101-1.

19. Delbecq F., Wang Y., Muralidhara A., El Ouardi K., Marlair G., Len C. // Front. Chem. 2018. Vol. 6. P. 146. DOI: 10.3389/fchem.2018.00146.

20. Martin G.N., Cirujano F.G. // Org. & Bio. Chem. 2020. DOI: 10.1039/d0ob01571g.

21. Akinfalabi S.I., Rashid U., Arbi Nehdi I., Yaw Choong T.S., Sbihi H.M., Gewik M.M. // Royal Society open science. 2020. Vol. 7. P. 191592. DOI: 10.1098/rsos.191592.

22. Itabaiana J.I., Alevar do Nascimento M., de Souza R.O.M.A., Dufour A., Wojcieszak R. Levoglucosan: Green Chem. 2020. DOI: 10.1039/d0gc01490g

23. Shende V.S., Saptal V.B., Bhanage B.M. // The Chemical Record. 2019. Vol. 19. P. 2022–2043. DOI: 10.1002/tcr.201800205.

24. Hara M. // ChemSusChem. 2009. Vol. 2. P. 129–35. DOI: 10.1002/cssc.200800222.

25. Borges M.E., Díaz L. // Renewable and Sustainable Energy Reviews. 2012. Vol. 16. P. 2839–2849. DOI: 10.1016/j.rser.2012.01.071.

26. Lotero E., Liu Y., Lopez D.E., Suwannakarn K., Bruce D.A., Goodwin J.J.G. // Ind. & Eng. Chem. Res. 2005. Vol. 44. P. 5353–63. DOI.org/10.1021/ie049157g.

27. Hidayat A., Rochmadi R., Wijaya K., Budiman A. // Proc. Chem. 2015. Vol. 16. P. 365–371. DOI: 10.1016/j.proche.2015.12.065

28. Jasen P., Marchetti J.M. // International Journal of Low-carbon Technologies. 2012. Vol. 7. P. 325–330. DOI: 10.1093/ijlct/ctr049.

29. Ingle A. P., Chandel A. K., Philippini R., Martiniano S.E., da Silva S.S. // Symmetry. 2020. Vol. 12. P. 256. DOI: 10.3390/sym12020256.

30. US201361800986P. US AU CA BR / D.A. Slade, C.J. Ellens, J.N. Brown, A.J.S. Pollard, B. Neil Albin ; Renewable Energy Group Inc. 2014.

31. Cheng J., Liang J., Ding Z., Wang Y., Liu Z., Jiang M., Ren X. // Química Nova. 2018. Vol. 41. P. 613–618. DOI: 10.21577/0100-4042.20170230.

32. Mingzhu J., Lixue J., Fanfan N., Yu Z., Xiaoling S. // R. Soc. Open Sci. 2018. Vol. 5. P. 171988. DOI: 10.1098/rsos.171988.

33. Moussa Z., Judeh Z.M.A., Ahmed S.A. // RSC Advances. 2018. Vol. 9. No. 60. P. 35217–35272. DOI: 10.1039/c9ra07094j.

34. Sudarsanam P., Peeters E., Makshina E.V., Parvulescu V.I., Sels B.F. // Chem. Soc. Rev. 2019. Vol. 48. P. 2366–2421. DOI: 10.1039/c8cs00452h.

35. Ren X-Y., Feng X-B., Cao J., Tang W., Wang Z-H., Yang Z., Zhao J-P., Zhang L-Y., Wang Y-J., Zhao X-Y. // Energy & Fuels. 2020. Vol. 34. P. 10307–10363. DOI: 10.1021/acs.energyfuels.0c01432.

36. Liu F., Huang K., Zheng A., Xiao F-S., Dai S. // ACS Catalysis. 2017. Vol. 8. P. 372–391. DOI: 10.1021/acscatal.7b03369.

37. Zhao R., Chang Z., Jin Q., Li W., Dong B., Miao X. // Int. J. Food Sci. Technol. 2014. Vol. 49. P. 854–860. DOI: 10.1111/ijfs.12376.

38. Cauglia F., Canepa P. // Bioresource Technology. 2008. Vol. 99. P. 4065–4072. DOI: 10.1016/j.biortech.2007.01.036.

39. Woo K.S., Kim H.Y., Hwang I.G., Lee S.H., Jeong H.S. // Prev. Nut. and Food Sci. 2015. Vol. 20. P. 102–109. DOI:10.3746/pnf.2015.20.2.102.

40. Buzatu A. R., Frissen A.E., van den Broek L.A.M., Todea A., Motoc M., Boeriu C.G. // Processes. 2020. Vol. 8. 1638.

41. Liu X., Gong L., Xin M., Liu J. // J. Mol. Catal. A: Chem. 1999. Vol. 147. P. 37–40. DOI: 10.1016/S1381-1169(99)00125-9.

42. Gumel A. M., Annuar M.S.M., Heidelberg T., Chisti Y. // Proc. Biochem. 2011. Vol. 46. P. 2079–2090. DOI: 10.1016/j.procbio.2011.07.021.

43. Plou F. J., Cruces M.A., Ferrer M., Fuentes G., Pastor E., Bernabé M., Christensen M., Comelles F., Parra J.L., Ballesteros A. // J. Biotechnol. 2002. Vol. 96. P. 55−66. DOI: 10.1016/S0168-1656(02)00037-8.

44. Koumba I.S.K., Fabre J.-F., Bikanga R., Mouloungui Z. // Front. Chem. 2019. Vol. 7. DOI: 10.3389/fchem.2019.00587.

45. Habulin M., Šabeder S., Knez Ž. // The Journal of Supercritical Fluids. 2008. Vol. 45. P. 338–345. DOI: 10.1016/j.supflu.2008.01.002.

46. Xiao Y., Wu Q., Cai Y., Lin, X. // Carbohydrate Research. 2005. Vol. 340. P. 2097–2103. DOI: 10.1016/j.carres.2005.06.027.

47. Sakaki K., Aoyama A., Nakane T., Ikegami T., Negishi H., Watanabe K., Yanagishita H. // Desalination. 2006. Vol. 193. P. 260–266. DOI: 10.1016/j.desal.2005.06.063.

48. Yoo In S., Park S.J., Yoon H.H. // J. Ind. Eng. Chem. 2007. Vol. 13, No. 1. P. 1–6.

49. Ye R., Pyo S.-H., Hayes D.G. // Journal of the American Oil Chemists’ Society. 2009. Vol. 87. P. 281–293. DOI: 10.1007/s11746-009-1504-2.

50. Chang S.W., Shaw J.F. // New Biotechnology. 2009. Vol. 26. P. 109–116. DOI: 10.1016/j.nbt.2009.07.003.

51. Zhao K-H., Cai Y-Z., Lin X-S., Xiong J., Halling P.J., Yang Z. // Molecules. 2016. Vol. 21. P. 1294. DOI: 10.3390/molecules21101294.

52. Nair do Amaral Sampaio Neta, José Cleiton Sousa dos Santos, Soraya de Oliveira Sancho, Rodrigues S., Gonçalves L.R.B., Rodrigues L.R., Teixeira J.A. // Food Hydrocolloids. 2012. Vol. 27. P. 324–331. DOI: 10.1016/j.foodhyd.2011.10.009.

53. Zheng Y., Zheng M., Ma Z., Xin B., Guo R., Xu X. // Polar Lipids: Biology, Chemistry, and Technology. Illinois : AOCS Press, Urbana, 2015. P. 215–243. DOI: 10.1016/B978-1-63067-044-3.50012-1.

54. Pérez B., Anankanbil S., Guo Z. // Fatty Acids. London : AOCS Press, 2017. P. 329–354. DOI: 10.1016/B978-0-12-809521-8.00010-6.

55. Panpipat W., Chaijan M. // Ionic liquids in lipid processing and analysis: opportunities and challenges. London : OACS Press, 2016. P. 347–371. DOI:10.1016/B978-1-63067-047-4.00011-8.

56. Xiao Q., Chen G., Xiao A. // Inter. J. Bio. Mac. 2019. P. 906–918. DOI:10.1016/j.ijbiomac.2019.09.056.

57. Shamsuri A. A., Ain Md. Jamil S.N. // Processes. 2020. Vol. 8. 1039. DOI: 10.3390/pr8091039.

58. Cheng K.C., Khoo Z.S. Lo N.W., Tan W.J., Chemmangattuvalappil N.G. // Heliyon. 2020. Vol. 6. e03861. DOI: 10.1016/j.heliyon.2020.e03861.

59. Lee S., Wagh A., Sandhu G., Walsh M. // Food and Nutrition Sciences. 2018. Vol. 9. P. 1341–1357. DOI: 10.4236/fns.2018.912096.

60. Ye R., Hayes D.G., Burton R. // J. Am. Oil Chem. Soc. 2014. Vol. 91. P. 1891–1901. DOI: 10.1007/s11746-014-2537-8.

61. Klang V., Schwarz J.C., Matsko N., Rezvani E., El-Hagin N., Wirth M., Valenta C. // Pharmaceutics. 2011. Vol. 3. P. 275–306. DOI: 10.3390/pharmaceutics3020275.

62. Jadhav S.R., Vemula P.K., Kumar R., Raghavan S.R., John G. // Angewandte Chemie – International Edition. 2010. Vol. 49. P. 7695–7698. DOI: 10.1002/anie.201002095.

63. Kaewprapan K., Inprakhon P., Marie E., Durand A. // Carbohydrate Polymers. 2012. Vol. 88. P. 875–881. DOI: 10.1016/j.carbpol.2012.01.030.

64. Nelen B.A.P., Bax I., Cooper J.M. // Emulsifiers in Food Technology. United Kingdom : John Wiley & Sons, Ltd., 2015. P. 147–180.

65. Claverie V. Mise au oint d'un nouveau procédé de synthčse des esters de saccharose de degré de substitution contrôlé par une réaction de transfert d'acyle en milieu hétérogčne solide/liquide : Master's thesis. Toulouse, France : Université de Toulouse, 1998.

66. Ibinga S.K.K., Fabre J-F., Bikanga R., Mouloungui Z. // Front. Chem. 2019. Vol. 7, 587. DOI: 10.3389/fchem.2019.00587.

67. Chauvin C., Baczko K., Plusquellec D. // J. Org. Chem. 1993. Vol. 58. P. 2291--2295. DOI: 10.1021/jo00060a053

68. Baczko K., Nugier-Chauvin C., Banoub J., Thibault P., Plusquellec D. // Carbohyd. Res. 1995. Vol. 269. V. 79−88.

69. Pedersen N.R., Wimmer R., Emmersen J., Degn P., Pedersen L.H. // Carbohydr. Res. 2002. Vol. 337. P. 1179–1184. DOI: 10.1016/s0008-6215(02)00112-x

70. Xiao Q., Chen G., Xiao A. // Inter. J. Bio. Mac. 2019. P. 906–918. DOI: 10.1016/j.ijbiomac.2019.09.056.

71. Liu X., Gong L., Xin M., Liu J. // J. Mol. Cat. A: Chemical. 1999. Vol. 147. P. 37–40. DOI: 10.1016/S1381-1169(99)00125-9

72. Yang Z., Pan W. // Enz. Microb Technol. 2005. Vol. 37. P. 19–28. DOI: 10.1016/j.enzmictec.2005.02.014.

73. Ionic Liquids in Biotransformations and Organocatalysis / Ed. by P. Domínguez de María. Hoboken : Wiley, 2012.

74. Nowicki J., Muszyński M. // Curr. Org. Chem. 2014. Vol. 18. P. 2797–2807. DOI: 10.2174/1385272819666140630170909.

75. Lin X.S., Zou Y., Zhao K.H., Yang T.X., Halling P., Yang Z. // J. Surfactants Deterg. 2016. Vol. 19. P. 511–517. DOI: 10.1007/s11743-016-1798-7.

76. Findrik Z., Megyeri G., Gubicza L., Bélafi-Bakó K., Nemestóthy N., Sudar M. // J. Clean. Prod. 2016. Vol. 112. P. 1106–1111. DOI: 10.1016/j.jclepro.2015.07.098.

77. Alkhatib I.I.I., Ferreira M.L., Alba C.G., Bahamon D., Llovell F., Pereiro L.F., Joao M.M.A., Mohammad R.M.A., Vega A.B. // J. Chem. Eng. Data. 2020. Vol. 65, No. 12. P. 5844–5861. DOI: 10.1021/acs.jced.0c00750.

78. Flieger J., Flieger M. // Int. J. Mol. Sci. 2020. Vol. 21. P. 6267. DOI: 10.3390/ijms21176267.

79. Clarke C.J., Tu W.-C., Levers O., Bröhl A., Hallett J.P. // Chem. Rev. 2018. Vol. 118. P. 747–800. DOI: 10.1021/acs.chemrev.7b00571.

80. Appaturi J.N., Ratti R., Phoon B.L., Batagarawa S.M., Din I.U., Selvaraj M., Ramalingam R.J. // Dalton Trans. 2021. Vol. 50. P. 4445–4469. DOI: 10.1039/D1DT00456E.

81. Gutiérrez M.F., Álvaro O., Luis R.J., Andrea S. // Ingeniería e Investigación 2018. Vol. 38. P. 16–23. DOI: 10.15446/ing.investig.v38n1.61432.

82. Tual A., Bourles E., Barey P., Houdoux A., Desprairies M., Courthaudon J.L. // J. Colloid. Interf. Sci. 2006. Vol. 295. P. 495−503. DOI: 10.1016/j.jcis.2005.09.010.

83. Deshpande P.S., Deshpande T.D., Kulkarni R.D., Mahulikar P.P. // Ind. Eng. Chem. Res. 2013. Vol. 52. P. 15024–15033. DOI: 10.1021/ie401524g.

84. Huang D., Jiang X., Zhu H., Fu X., Zhong K., Gao W. // Ultrason. Sonochem. 2010. Vol. 17. P. 352–355. DOI: 10.1016/j.ultsonch.2009.08.009.

85. World Patent WO2016194887A1 / Kidani K., Akiyama K., Kurihara H., Tsukahara Y., Okumura H. 2016.

86. Lu Y., Yan R., Ma X., Wang Y. // Eur. Food Res. Technol. 2013. Vol. 237. P. 237–244. DOI: 10.1007/s00217-013-1985-y.

87. Colussi R., El Halal S.L.M., Pinto V.Z., Bartz J., Gutkoski, L.C., da Rosa Z.E., Dias A.R.G. // LWT – Food Sci. Technol. 2015. Vol. 62. P. 1076–1082. DOI: 10.1016/j.lwt.2015.01.053.

88. Liang M.-Y., Chen Y., Banwell M.G., Wang Y., Lan P. // J. Agric. Food Chem. 2018. Vol. 66. P. 3949–3956. DOI: 10.1021/acs.jafc.8b00913.

89. Inprakhon P., Wongthongdee N., Amornsakchai T., Pongtharankul T., Sunintaboon P., Wiemann L.O., Durand A., Sieber V. // J. Biotech. 2017. Vol. 259. P. 182– 190.

90. Zhong X., Qian J., Liu M., Ma L. // Eng. Life Sci. 2013. Vol. 13. P. 563–571.

91. Ren K., Lamsal B.P. // Food Chem. 2017. Vol. 214. P. 556–563.

92. Pöhnlein M., Slomka C., Kukharenko O., Gärtner T., Wiemann L.O., Sieber V., Syldatk C., Hausmann R. // Eur. J. Lipid Sci. Technol. 2014. Vol. 116. P. 423–428. DOI: 10.1002/ejlt.201300380.

93. Zhang X., Song F., Taxipalati M., Wei W., Feng F. // PLoS ONE. 2014. Vol. 9. e114845. DOI: 10.1371/journal.pone.0114845.

94. Ratti R. // SN Appl. Sci. 2020. Vol. 2. P. 263. DOI: 10.1007/s42452-020-2019-6.

95. Kobayashi T. // Biotechnol. Lett. 2011. Vol. 33. P. 1911–1919. DOI: 10.1007/s10529-011-0663-z.

96. Varma R.S. // ACS Sustain. Chem. Eng. 2016. Vol. 4. P. 5866–5878. DOI: 10.1021/acssuschemeng.6b01623.

97. Ogawa S., Endo A., Kitahara N., Yamagishi T., Aoyagi S., Hara S. // Carb. Res. 2019. Vol. 482. P. 107739. DOI: 10.1016/j.carres.2019.06.018.

98. Ye R., Hayes D.G., Burton R. // J. Am. Oil Chem. Soc. 2014. Vol. 91. P. 1891–1901. DOI: 10.1007/s11746-014-2537-8.

99. Ye R., Hayes D., Burton R., Liu A., Harte F., Wang W. // Catalysts. 2016. Vol. 6. P. 78. DOI: 10.3390/catal6060078.

100. Adelhorst K., Björkling F., Godtfredsen S.E., Kirk O. // Synthesis. 1990. Vol. 2. P. 112–115. DOI: 10.1055/s-1990-26802.

101. Yan Y.-L., Guo J.-R., Liang C.-F. // Chem.: Asian J.. 2017. Vol. 12. P. 2471–2479. DOI: 10.1002/asia.201700867.

102. Chatterjee D., Paul A., Rajkamal R., Yadav S. // RSC Adv. 2015. Vol. 5. P. 29669–29674. DOI: 10.1039/c5ra03461b.

103. Giri S.K., Gour R., Kartha K.P.R. // RSC Adv. 2017. Vol. 7. P. 13653–13667. DOI: 10.1039/C6RA28882K.

104. Paragas E.M., Monreal I.A., Vasil C.M., Saludes J.P. // Carbohydr. Res. 2015. Vol. 402. P. 77–80. DOI: 10.1016/j.carres.2014.09.002.

105. Traboni S., Bedini E., Vessella G., Iadonisi A. // Catalysts. 2020. Vol. 10. P. 1142. DOI: 10.3390/catal10101142.

106. Zhao H. // J. Chem. Tech. Biotech. 2010. Vol. 85. P. 891–907. DOI: 10.1002/jctb.2375.

107. Ventura S.P.M., e Silva F.A., Quental M.V., Mondal D., Freire M.G., Coutinho J.A.P. // Chem. Rev. 2017. Vol. 117. P. 6984–7052. DOI: 10.1021/acs.chemrev.6b00550.

108. Liang J., Zeng W., Yao P., Wei Y. // Adv. Biol. Chem. 2012. Vol. 2. P. 226–232. DOI: 10.4236/abc.2012.23027.

109. Gawande M.B., Goswami A., Felpin F.-X., Asefa T., Huang X., Silva R., Zou, X., Zboril R., Varma R.S. // Chemical Reviews. 2016. Vol. 116, No. 6. P. 3722–3811. DOI: 10.1021/acs.chemrev.5b00482.

110. Rahman M.B.A., Arumugam M., Khairuddin N.S.K., Abdulmalek E., Basri M., Salleh A. // Asian J. Chem. 2012. Vol. 24. P. 5058–5062.

111. Galonde N., Brostaux Y., Richard G., Nott K., Jerôme C., Fauconnier C. // Proc. Biochem. 2013. Vol. 48. P. 1914–1920. DOI: 10.1016/j.procbio.2013.08.023

112. Fischer F., Happe M., Emery J., Fornage A., Schütz R. // J. Mol. Catal. B: Enzym. 2013. Vol. 90. P. 98–106. DOI: 10.1016/j.molcatb.2013.01.019.

113. Mai N. L., Ahn K., Bae S.W., Shin D.W., Morya K., Koo Y.-M. // Biotechnol. J. 2014. Vol. 9. P. 1–8. DOI: 10.1002/biot.201400099.

114. Li L., Ji F., Wang J., Li Y., Bao Y. // Enzyme Microb. Technol. 2015. Vol. 69. P. 46–53. DOI: 10.1016/j.enzmictec.2014.12.003.

115. Findrik Z., Megyeri G., Gubicza L., Bélafi-Bakó K., Nemestóthy N., Sudar M. // J. Clean. Prod. 2016, vol. 112, pp. 1106–1111. DOI: 10.1016/j.jclepro.2015.07.098.

116. Patil D.R., Rethwisch D.G., Dordick J.S. // Biotechnol. Bioeng. 1991. Vol. 37. P. 639–646. DOI: 10.1002/bit.260370706.

117. Degn P., Zimmermann W. // Biotechnol. Bioeng. 2001. Vol. 74. P. 483–491. DOI: 10.1002/bit.1139.

118. Sharma A., Chattopadhyay S. // Biotechnol. Lett. 1993. Vol. 15. P. 1145–1146. DOI: 10.1007/BF00131205.

119. Khaled N., Montet D., Pina M., Graille J. // Biotechnol. Lett. 1991. Vol. 13. P. 167–172. DOI: 10.1007/BF01025812.

120. Schlotterbeck A., Lang S., Wray V., Wagner F. // Biotechnol. Lett. 1993. Vol. 15. P. 61–64. DOI: 10.1007/BF00131554.

121. Scheckermann C., Schlotterbeck A., Schmidt M., Wray V., Lang S. // Enzyme Microb. Technol. 1995. Vol. 17. P. 157–162. DOI: 10.1016/0141-0229(94)00005-C.

122. Chaiyaso T., Aran H-K., Zimmermann W. // J. Ind. Microbiol. Biotechnol. 2006. Vol. 33. P. 338–342. DOI: 10.1007/s10295-005-0073-0.

123. Yan Y.-L., Guo J.-R., Liang C.-F. // Chem.: Asian J. 2017. Vol. 12. P. 2471–2479. DOI:10.1002/asia.201700867.

124. Vakros J. // Catalysts. 2018. Vol. 8. P. 562. DOI: 10.3390/catal8110562.

125. Santos E.M., de Carvalho Teixeira A.P., da Silva F.G., Cibaka T.E., Araújo M.H., Oliveira W.X.C., Medeiros F., Brasil A.N., de Oliveira L.S., Lago R.M. // Fuel. 2015. Vol. 150. P. 408–414. DOI: 10.1016/j.fuel.2015.02.027.

126. Faruque M.O., Razzak S.A., Hossain M.M. // Catalysts. 2020. Vol. 10. P. 1025. DOI: 10.3390/catal10091025.

127. Ha S.H., Hiep N.M., Lee S.H., Koo Y.-M. // Bioproc. Biosyst. Eng. 2010. Vol. 33. P. 63–70. DOI: 10.1007/s00449-009-0363-4.

128. Sasayama T., Kamikanda Y., Shibasaki-Kitakawa N. // Chem. Eng. J. 2018. Vol. 334. P. 2231–2237. DOI: 10.1016/j.cej.2017.11.132.

129. Fraile J.M., Saavedra C.J. // ChemistrySelect. 2017. Vol. 2. P. 1013–1018. DOI: 10.1002/slct.201601866.

130. Vijai K.R.T., Sandhya R.G., Prasad R.B.N., Prabhavathi D.B.L.A. // RSC Adv. 2015. Vol. 5. P. 40997–41005. DOI: 10.1039/c5ra03605d.

131. Ma Y.R., Banwell M.G., Yan R., Lan P. // J. Agric. Food Chem. 2018. Vol. 66. P. 8832–8840. DOI: 10.1021/acs.jafc.8b02391.

132. Szuts A., Szabó-Révész P. // Int. J. Pharm. 2012. Vol. 433. P. 1–9. DOI: 10.1016/j.ijpharm.2012.04.076.

133. Gutiérrez M.F., Álvaro O., Luis R.J., Andrea S. // Ingeniería e Investigación. 2018, Vol. 38. P. 16−23. DOI: 10.15446/ing.investig.v38n1.61432.

134. Deshpande P.S., Deshpande T.D., Kulkarni R.D., Mahulikar P.P. // Ind. Eng. Chem. Res. 2013. Vol. 52. P. 15024–15033. DOI: 10.1021/ie401524g.

135. Otache M.A., Duru R.U., Achugasim O., Abayeh O.J., // J. Poly. Env. 2021. Vol. 29. P. 1365–1379. DOI: 10.1007/s10924-020-02006-0.

136. Griffin W.C. // Am. Perfum. and Essent. Oil Rev. 1995. Vol. 65. P. 26–29.

137. Neta S.A.D.N., dos Santos, S.C.J., Sancho O.D.S., Rodrigues S., Gonçalves B.R.L., Rodrigues R.L., Teixeira J.A. // Food Hydrocoll. 2012. Vol. 27. P. 324–331. DOI: 10.1016/j.foodhyd.2011.10.009.


Review

For citations:


Otache M.A., Duru R.U., Achugasim O., Abayeh O.J. Catalytic Methods for the Production of Sugar Esters. Kataliz v promyshlennosti. 2021;21(6):424. (In Russ.) https://doi.org/10.18412/1816-0387-2021-6-424

Views: 563


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)