

Reductive Catalytic Fractionation of Lignocellulosic Biomass: A New Promising Method of its Integrated Processing
https://doi.org/10.18412/1816-0387-2021-6-425-443
Abstract
The review discusses the results of recent studies in the promising field of integrated processing of lignocellulosic biomass – the reductive catalytic fractionation (RCF). The effect of catalysts, cocatalysts, solvents, hydrogen sources and features of lignocellulosic feedstock on the selectivity of monomeric products formation from lignin is considered. RCF processes are performed mostly with the heterogeneous catalysts, which allow implementing the reductive depolymerization of lignin to obtain low-molecular compounds and preserve carbohydrate components of biomass. Among the studied catalysts based on platinum group metals and transition metals, the highest activity is observed for the catalysts containing Pd, Pt, Ru and Ni. Features of the metal also affect the composition of the resulting products. Thus, ruthenium catalysts make it possible to obtain 4-propylguaiacol as the main product, while Ni and Pd – 4-propanolguaiacol. Mo-containing catalysts, owing to their lower hydrogenating activity, can be used to obtain monolignols or their etherified derivatives with the preservation of carbohydrate components of lignocellulosic biomass. However, most efficient in RCF processes are the bifunctional catalysts, which have both the acidic and metallic active sites. Acidic sites promote the cleavage of the ether β-O-4 bonds, whereas metallic sites – the reduction of the formed intermediate compounds. An important aspect of choosing the appropriate catalysts for RCF process is the possibility of their repeated application. The use of a ferromagnetic catalyst or a catalyst basket allows separating the catalyst from the products.
About the Authors
A. V. MiroshnikovaRussian Federation
A. S. Kazachenko
Russian Federation
B. N. Kuznetsov
Russian Federation
O. P. Taran
Russian Federation
References
1. Wang X., Zhou J., Li H. and Sun G. Advanced Materials Research. 2013. Vol. 821-822. P. 1126–1134.
2. Schutyser W., Renders T., Van den Bosch S., Koelewijn S.F., Beckham G.T. and Sels B.F. Chem Soc Rev. 2018. Vol. 47. № 3. P. 852–908.
3. Renders T., Van den Bossche G., Vangeel T., Van Aelst K. and Sels B. Current Opinion in Biotechnology. 2019. Vol. 56. P. 193–201.
4. Li C., Zhao X., Wang A., Huber G.W. and Zhang T. Chemical Reviews. 2015. Vol. 115. № 21. P. 11559–11624.
5. Zhao Y., Shakeel U., Saif Ur Rehman M., Li H., Xu X. and Xu J. Journal of Cleaner Production. 2020. Vol. 253. P. 120076.
6. You T.-T., Zhang L.-M., Zhou S.-K. and Xu F. Industrial Crops and Products. 2015. Vol. 71. P. 65–74.
7. Tarasov D., Leitch M. and Fatehi P. Lignin-carbohydrate complexes: Properties, applications, analyses, and methods of extraction: A review. Biotechnology for Biofuels. 2018. Vol. 11.
8. Zakzeski J., Bruijnincx P.C.A., Jongerius A.L. and Weckhuysen B.M. Chemical Reviews. 2010. Vol. 110. № 6. P. 3552–3599.
9. Lancefield C.S., Panovic I., Deuss P.., Barta K. and Westwood N.J. Green Chemistry. 2017. Vol. 19. № 1. P. 202–214.
10. Van den Bosch S., Koelewijn S. F., Renders T., Van den Bossche G., Vangeel T., Schutyser W. and Sels B.F. Topics in Current Chemistry. 2018. Vol. 376. № 5. P. 36.
11. Deuss P.J., Lancefield C.S., Narani A., de Vries J.G., Westwood N.J. and Barta K. Green Chemistry. 2017. Vol. 19. № 12. P. 2774–2782.
12. Sun Z., Fridrich B., de Santi A., Elangovan S. and Barta K. Chemical Reviews. 2018. Vol. 118. № 2. P. 614–678.
13. Sun Z. and Barta K. Chemical Communications. 2018. Vol. 54. № 56, P. 7725–7745.
14. Taran O.P., Gromov N.V. and Parmon V.N. The Royal Society of Chemistry. 2018. Р. 25–64.
15. Dagle V.L., Smith C., Flake M., Albrecht K.O., Gray M.J., Ramasamy K.K. and Dagle R.A. Green Chemistry. 2016. Vol. 18. № 7. P. 1880–1891.
16. Chen J., Lu F., Si X., Nie X., Lu R. and Xu J. ChemSusChem. 2016. Vol. 9. № 23. P. 3353–3360.
17. Kuznetsov B.N., Sudakova I.G., Garyntseva N.V., Tarabanko V.E., Yatsenkova O.V., Djakovitch L. and Rataboul F. Catalysis Today. 2021. Vol. 375. P. 132–144.
18. Kuznetsov B., Sudakova I., Garyntseva N., Tarabanko V., Chesnokov N., Djakovitch L. and Rataboul F. Kinetic Studies and Optimization of Heterogeneous Catalytic Oxidation Processes for the Green Biorefinery of Wood. Topics in Catalysis. 2020. Vol. 63.
19. Kuznetsov B.N., Sudakova I.G., Garyntseva N.V., Kondrasenko A.A., Pestunov A.V., Djakovitch L. and Pinel C. Reaction Kinetics, Mechanisms and Catalysis. 2019. Vol. 126. № 2. P. 717–735.
20. Kuznetsov B.N., Sudakova I.G., Garyntseva N.V., Levdansky V.A., Ivanchenko N.M., Pestunov A.V., Djakovitch L. and Pinel C. Wood Science and Technology. 2018. Vol. 52. № 5. P. 1377–1394.
21. Galkin M.V. and Samec J.S. ChemSusChem. 2016. Vol. 9. № 13. P. 1544–1558.
22. Renders T., Van den Bosch S., Koelewijn S.F., Schutyser W. and Sels B.F. Energy & Environmental Science. 2017. Vol. 10. № 7. P. 1551–1557.
23. Van den Bosch S., Schutyser W., Vanholme R., Driessen T., Koelewijn S.F., Renders T., De Meester B., Huijgen W.J.J., Dehaen W., Courtin C.M., Lagrain B., Boerjan W. and Sels B.F. Energy & Environmental Science. 2015. Vol. 8. № 6. P. 1748–1763.
24. Zhang K., Li H., Xiao L.-P., Wang B., Sun R.-C. and Song G. Bioresource technology. 2019. Vol. 285. P. 121335.
25. Kuznetsov B.N., Sharypov V.I., Chesnokov N.V., Beregovtsova N.G., Baryshnikov S.V., Lavrenov A.V., Vosmerikov A.V. and Agabekov V.E. Kinetics and Catalysis. 2015. Vol. 56. № 4. P. 434–441.
26. Macala G.S., Matson T.D., Johnson C.L., Lewis R.S., Iretskii A.V. and Ford P.C. ChemSusChem. 2009. Vol. 2. № 3. P. 215–217.
27. Baryshnikov Sergei V., Sharypov Victor I., Beregovtsova Natalia G., Taran Oksana P., Agabekov Vladimir E. and N K.B. Journal of Siberian Federal University. Chemistry. 2014. Vol. 7. № 3. P. 455–463.
28. Song Q., Wang F., Cai J., Wang Y., Zhang J., Yu W. and Xu J. Energy & Environmental Science. 2013. Vol. 6. № 3. P. 994–1007.
29. Galkin M.V. and Samec J.S.M. ChemSusChem. 2014. Vol. 7. № 8. P. 2154–2158.
30. Ferrini P. and Rinaldi R. Angew Chem Int Ed Engl. 2014. Vol. 53. № 33. P. 8634-–8639.
31. Boocock D.G.B., Mackay D. and Lee P. The Canadian Journal of Chemical Engineering. 1982. Vol. 60. № 6. P. 802–808.
32. Boocock D.G.B., Mackay D., Franco H. and Lee P. The Canadian Journal of Chemical Engineering. 1980. Vol. 58. № 4. P. 466–469.
33. Boocock D.G.B., Kallury R.K.M.R. and Tidwell T.T. Analytical Chemistry. 1983. Vol. 55. № 11. P. 1689–1694.
34. Araya P.E., Droguett S.E., Neuburg H.J. and Badilla-Ohlbaum R. The Canadian Journal of Chemical Engineering. 1986. Vol. 64. № 5. P. 775–780.
35. Кузнецов Б.Н. Катализ химических превращений угля и биомассы. Новосибирск: Наука, Сибирское отлеление, 1990.
36. Calzavara Y., Joussot-Dubien C., Boissonnet G. and Sarrade S. Energy Conversion and Management. 2005. Vol. 46. № 4. P. 615–631.
37. Sun Z., Bottari G., Afanasenko A., Stuart M.C.A., Deuss P.J., Fridrich B. and Barta K. Nature Catalysis. 2018. Vol. 1. № 1. P. 82–92.
38. Rinaldi R., Jastrzebski R., Clough M.T., Ralph J., Kennema M., Bruijnincx P. C. and Weckhuysen B.M. Angew Chem Int Ed Engl. 2016. Vol. 55. № 29. P. 8164–8215.
39. Yan N., Zhao C., Dyson P.J., Wang C., Liu L. T. and Kou Y. ChemSusChem. 2008. Vol. 1. № 7. P. 626–629.
40. Parsell T., Yohe S., Degenstein J., Jarrell T., Klein I., Gencer E., Hewetson B., Hurt M., Kim J.I., Choudhari H., Saha B., Meilan R., Mosier N., Ribeiro F., Delgass W.N., Chapple C., Kenttämaa H.I., Agrawal R. and Abu-Omar M.M. Green Chemistry. 2015. Vol. 17. № 3. P. 1492–1499.
41. Van den Bosch S., Schutyser W., Koelewijn S.F., Renders T., Courtin C.M. and Sels B.F. Chemical Communications. 2015. Vol. 51. № 67. P. 13158–13161.
42. Klein I., Saha B. and Abu-Omar M.M. Catalysis Science & Technology. 2015. Vol. 5. № 6. P. 3242–3245.
43. Schutyser W., Van den Bosch S., Renders T., De Boe T., Koelewijn S.F., Dewaele A., Ennaert T., Verkinderen O., Goderis B., Courtin C.M. and Sels B.F. Green Chemistry. 2015. Vol. 17. № 11. P. 5035–5045.
44. Huang X., Zhu J., Koranyi T.I., Boot M.D. and Hensen E.J. ChemSusChem. 2016. Vol. 9. № 23. P. 3262–3267.
45. Studer M.H., DeMartini J.D., Davis M.F., Sykes R.W., Davison B., Keller M., Tuskan G.A. and Wyman C.E. Proc Natl Acad Sci USA. 2011. Vol. 108. № 15. P. 6300–6305.
46. Torr K.M., van de Pas D.J., Cazeils E. and Suckling I.D. Bioresource technology. 2011. Vol. 102. № 16. P. 7608–7611.
47. Brosse N., Dufour A., Meng X., Sun Q. and Ragauskas A. Biofuels, Bioproducts and Biorefining. 2012. Vol. 6. № 5. P. 580–598.
48. Wang S., Gao W., Li H., Xiao L.-P., Sun R.-C. and Song G. ChemSusChem. 2018. Vol. 11. № 13. P. 2114–2123.
49. Kim S. and Dale B.E. Biomass and Bioenergy. 2004. Vol. 26. № 4. P. 361–375.
50. Luo H., Klein I. M., Jiang Y., Zhu H., Liu B., Kenttämaa H.I. and Abu-Omar M.M. ACS Sustainable Chemistry & Engineering. 2016. Vol. 4. № 4. P. 2316–2322.
51. Anderson E.M., Katahira R., Reed M., Resch M.G., Karp E.M., Beckham G.T. and Román-Leshkov Y. ACS Sustainable Chemistry & Engineering. 2016. Vol. 4. № 12. P. 6940–6950.
52. Ebikade O.E., Samulewicz N., Xuan S., Sheehan J.D., Wu C. and Vlachos D.G. Green Chemistry. 2020. Vol. 22. № 21. P. 7435–7447.
53. Kazachenko A.S., Tarabanko V.E., Miroshnikova A.V., Sychev V.V., Skripnikov A.M., Malyar Y.N., Mikhlin Y.L., Baryshnikov S.V. and Taran O.P. Catalysts. 2021. Vol. 11. № 1.
54. Kazachenko A.S., Miroshnikova A.V., Tarabanko V.E., Skripnikov A.M., Malyar Y.N., Borovkova V.S., Sychev V.V. and Taran O.P. Catalysts. 2021. Vol. 11. № 8.
55. Rowell R. Handbook Of Wood Chemistry And Wood Composites, 2005.
56. Vangeel T., Renders T., Van Aelst K., Cooreman E., Van den Bosch S., Van den Bossche G., Koelewijn S.F., Courtin C.M. and Sels B.F. Green Chemistry. 2019. Vol. 21. № 21. P. 5841–5851.
57. Stone M., Anderson E., Meek K., Reed M., Katahira R., Chen F., Dixon R., Beckham G. and Roman-Leshkov Y. ACS Sustainable Chemistry & Engineering. 2018. Vol. 6.
58. Berstis L., Elder T., Crowley M. and Beckham G.T. ACS Sustainable Chemistry & Engineering. 2016. Vol. 4. № 10. P. 5327–5335.
59. Li Y., Shuai L., Kim H., Motagamwala A.H., Mobley J., Yue F., Tobimatsu Y., Havkin Frenkel D., Chen F., Dixon R., Luterbacher J., Dumesic J. and Ralph J. Science Advances. 2018. Vol. 4. P. eaau2968.
60. Казаченко А.С., Барышников С.В., Чудина А.И., Маляр Ю.Н., Сычев В.В., Таран О.П., Дьякович Л., Кузнецов Б.Н. Гидрирование древесины и этаноллигнина пихты водородом в сверхкритическом этаноле в присутствии бифункционального катализатора Ru/C // Химия растительного сырья. 2019. Т. 2. С. (принята в печать).
61. Kumaniaev I., Subbotina E., Sävmarker J., Larhed M., Galkin M.V. and Samec J.S.M. Green Chemistry. 2017. Vol. 19. № 24. P. 5767–5771.
62. Kuznetsov B.N., Sharypov V.I., Baryshnikov S.V., Beregovtsova N.G. and Yakovlev V.A. Journal of Siberian Federal University. Chemistry. 2016. Vol. 9. № 2. P. 230–242.
63. Cheng S., Wilks C., Yuan Z., Leitch M. and Xu C. Polymer Degradation and Stability. 2012. Vol. 97. № 6. P. 839–848.
64. Cheng S., D’cruz I., Wang M., Leitch M. and Xu C. Energy & Fuels. 2010. Vol. 24. № 9. P. 4659–4667.
65. Ghose T.K., Pannir Selvam P.V. and Ghosh P. Biotechnology and Bioengineering. 1983. Vol. 25. № 11. P. 2577–2590.
66. Santos R.B., Hart P., Jameel H. and Chang H.-M. BioResources. 2013. Vol 8. № 1.
67. Sturgeon M.R., Kim S., Lawrence K., Paton R.S., Chmely S.C., Nimlos M., Foust T.D. and Beckham G.T. ACS Sustainable Chemistry & Engineering. 2014. Vol. 2. № 3. P. 472–485.
68. Alonso D.M., Bond J.Q. and Dumesic J.A. Green Chemistry. 2010. Vol. 12. № 9. P. 1493–1513.
69. Schüth F. The Royal Society of Chemistry. 2015. Р. 1–21.
70. Moret S., Dyson P.J. and Laurenczy G. Nature Communications. 2014. Vol. 5. P. 4017.
71. Renders T., Cooreman E., Van den Bosch S., Schutyser W., Koelewijn S.F., Vangeel T., Deneyer A., Van den Bossche G., Courtin C.M. and Sels B.F. Green Chemistry. 2018. Vol. 20. № 20. P. 4607–4619.
72. Deuss P.J. and Barta K. Coordination Chemistry Reviews. 2016. Vol. 306. P. 510–532.
73. Deuss P.J., Scott M., Tran F., Westwood N.J., de Vries J.G. and Barta K. J Am Chem Soc. 2015. Vol. 137. № 23. P. 7456–7467.
74. Li C., Zheng M., Wang A. and Zhang T. Energy & Environmental Science. 2012. Vol. 5. № 4. P. 6383–6390.
75. Behling R., Valange S. and Chatel G. Green Chemistry. 2016. Vol. 18. № 7. P. 1839–1854.
76. Chesi C., de Castro I.B.D., Clough M.T., Ferrini P. and Rinaldi R. ChemCatChem. 2016. Vol. 8. № 12. P. 2079–2088.
77. Van den Bosch S., Renders T., Kennis S., Koelewijn S.F., Van den Bossche G., Vangeel T., Deneyer A., Depuydt D., Courtin C.M. Green Chemistry. 2017. Vol. 19. №14. P. 3313–3326.
78. Sun J., Li H., Xiao L.-P., Guo X., Fang Y., Sun R.-C. and Song G. ACS Sustainable Chemistry & Engineering. 2019. Vol. 7. № 5. P. 4666–4674.
79. Qiu S., Guo X., Huang Y., Fang Y. and Tan T. ChemSusChem. 2019. Vol. 12. № 4. P. 944–954.
80. Gong X., Sun J., Xu X., Wang B., Li H. and Peng F. Bioresource Technology. 2021. Vol. 333. P. 124977.
81. Huang X., Ouyang X., Hendriks Bart M.S., Gonzalez O.M.M., Zhu J. Faraday Discussions. 2017. Vol. 202. № 0. P. 141–156.
82. Huang X., Morales Gonzalez O.M., Zhu J., Korányi T.I., Boot M.D. and Hensen E.J.M. Green Chemistry. 2017. Vol. 19. № 1. P. 175–187.
83. Renders T., Van den Bosch S., Vangeel T., Ennaert T., Koelewijn S.-F., Van den Bossche G., Courtin C.M., Schutyser W. and Sels B.F. ACS Sustainable Chemistry & Engineering. 2016. Vol. 4. № 12. P. 6894–6904.
84. Galkin M.V., Smit A.T., Subbotina E., Artemenko K.A., Bergquist J., Huijgen W.J.J. and Samec J.S.M. ChemSusChem. 2016. Vol. 9. № 23. P. 3280–3287.
85. Huang Y., Duan Y., Qiu S., Wang M., Ju C., Cao H., Fang Y. and Tan T. Sustainable Energy & Fuels. 2018. Vol. 2. № 3. P. 637–647.
86. Kuznetsov B.N., Sharypov V.I., Baryshnikov S.V., Miroshnikova A.V., Taran O.P., Yakovlev V.A., Lavrenov A.V. and Djakovitch L. Catalysis Today. 2021. Vol. 379. P. 114–123.
87. Pepper J.M. and R.W.F. Canadian Journal of Chemistry. 1978. Vol. 56. P. 896–898.
88. Parsell T.H., Owen B.C., Klein I., Jarrell T.M., Marcum C.L., Haupert L.J., Amundson L.M., Kenttämaa H.I., Ribeiro F., Miller J.T. and Abu-Omar M.M. Chemical Science. 2013. Vol. 4. № 2. P. 806–813.
89. Klein I., Marcum C., Kenttämaa H. and Abu-Omar M.M. Green Chemistry. 2016. Vol. 18. № 8. P. 2399–2405.
90. Taran O.P., Sharypov V.I., Baryshnikov S.V., Beregovtsova N.G., Miroshnikova A.V., Kazachenko A.S., Sychev V.V. and Kuznetsov B.N. Kataliz v promyshlennosti. 2020. Vol. 20. № 2. P. 127–139.
91. Alekseeva M.V., Otyuskaya D.S., Rekhtina M.A., Bulavchenko O.A., Stonkus O.А., Kaichev V.V., Zavarukhin S.G., Thybaut J.W., Alexiadis V., Venderbosch R.H. and Yakovlev V.А. Applied Catalysis A: General. 2019. Vol. 573. P. 1–12.
92. Agarwal A., Rana M. and Park J.-H. Fuel Processing Technology. 2018. Vol. 181. P. 115–132.
93. Ullah N., Odda A.H., Liang K., Kombo M.A., Sahar S., Ma L.-B., Fang X.-X. and Xu A.-W. Green Chemistry. 2019. Vol. 21. № 10. P. 2739–2751.
94. Renders T., Schutyser W., Van den Bosch S., Koelewijn S.-F., Vangeel T., Courtin C.M. and Sels B.F. ACS Catalysis. 2016. Vol. 6. no.№ 3. P. 2055–2066.
95. Pepper J.M. and Hibbert H. J Am Chem Soc. 1948. Vol. 70. № 1. P. 67–71.
96. Shuai L. and Luterbacher J. ChemSusChem. 2016. Vol. 9. № 2. P. 133–155.
97. Shuai L., Amiri M.T., Questell-Santiago Y.M., Heroguel F., Li Y., Kim H., Meilan R., Chapple C., Ralph J. and Luterbacher J.S. Science. 2016. Vol. 354. № 6310. P. 329–333.
98. Zhu S., Guo J., Wang X., Wang J. and Fan W. ChemSusChem. 2017. Vol. 10. № 12. P. 2547–2559.
99. Korányi T.I., Fridrich B., Pineda A. and Barta K. Molecules. 2020. Vol. 25. № 12.
100. M.P.J. and W.S. Canadian Journal of Chemistry. 1963. Vol. 41. P. 2867–2875.
101. Chen H., Fu Y., Wang Z. and Qin M. BioResources. 2015. Vol. 10. № 2.
102. Bozell J.J., Black S.K., Myers M., Cahill D., Miller W.P. and Park S.K. Biomass and Bioenergy. 2011. Vol. 35. № 10. P. 4197–4208.
103. Wang X. and Rinaldi R. Angewandte Chemie International Edition. 2013. Vol. 52. № 44. P. 11499–11503.
104. Wang X. and Rinaldi R. Energy & Environmental Science. 2012. Vol. 5. № 8. P. 8244–8260.
105. Chen X., Zhang K., Xiao L.-P., Sun R.-C. and Song G. Biotechnology for Biofuels. 2020. Vol. 13. № 1. P. 2.
106. Sawadjoon S., Lundstedt A. and Samec J.S.M. ACS Catalysis. 2013. Vol. 3. № 4. P. 635–642.
Review
For citations:
Miroshnikova A.V., Kazachenko A.S., Kuznetsov B.N., Taran O.P. Reductive Catalytic Fractionation of Lignocellulosic Biomass: A New Promising Method of its Integrated Processing. Kataliz v promyshlennosti. 2021;21(6):425-443. (In Russ.) https://doi.org/10.18412/1816-0387-2021-6-425-443