Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Processes for the production of acetylene in the XXth century. Main trends of their development within the paradigm of low-carbon economy of the future

https://doi.org/10.18412/1816-0387-2022-1-20-39

Abstract

The review considers methods for the production of acetylene, both the industrially implemented methods having a long history and the new ones that are at the step of laboratory studies and bench testing. The authors discuss the possibility of moving from the processes of acetylene production accompanied by the emission of considerable amounts of greenhouse gases (the carbide method, oxidative pyrolysis of natural gas) to the low-carbon or carbon-free plasmochemical processes of natural gas and coal processing with the use of energy generated by renewable sources (wind energy and solar energy).

About the Authors

D. A. Shlyapin
Center of New Chemical Technologies BIC SB RAS, Omsk
Russian Federation


T. N. Afonasenko
Center of New Chemical Technologies BIC SB RAS, Omsk
Russian Federation


D. V. Glyzdova
Center of New Chemical Technologies BIC SB RAS, Omsk
Russian Federation


N. N. Leontieva
Center of New Chemical Technologies BIC SB RAS, Omsk
Russian Federation


A. V. Lavrenov
Center of New Chemical Technologies BIC SB RAS, Omsk
Russian Federation


References

1. Schobert H. // Chemical reviews. 2014. V. 114. №. 3. Р. 1743-1760.

2. Pässler P. et al. Acetylene //Ullmann's Encyclopedia of Industrial Chemistry. – 2000.

3. https://ec.europa.eu/clima/policies/eu-climate-action/law_en (дата обращения: 25.08.2021)

4. Технология переработки углеводородных газов: Учебник для вузов / В.С. Арутюнов, И.А. Голубева, О.Л. Елисеев, Ф.Г. Жагфаров. М.: Юрайт, 2020. 723 с. (Высшее образование). Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/447433 (дата обращения: 25.08.2021)

5. https://www.prnewswire.com/news-releases/acetylene-industry-review-2015-2019-and-forecast-to-2030---growing-applications-across-various-industries-301005161.html (дата обращения: 25.08.2021)

6. https://www.reportsanddata.com/report-detail/acetylene-market (дата обращения: 25.08.2021)

7. https://www.globenewswire.com/news-release/2019/04/12/1803145/0/en/Global-Acetylene-Gas-Market-is-Projected-to-Grow-at-US-6090-Mn-by-2025-End-QY-Research-Inc.html (дата обращения: 25.08.2021)

8. https://www.statista.com/statistics/933160/global-market-value-of-acetylene (дата обращения: 25.08.2021)

9. https://www.marketintellica.com/report/MI42508-global-acetylene-gas-market-study-2016 (дата обращения: 25.08.2021)

10. I. Kudryashova, E. Kharlampenkov, N. Zakharova, A. Kolevatova. Ecological-and-Economic Evaluation of Vinyl Chloride Production in Mineral Resource Clusters. E3S Web of Conferences 41, 02025 (2018). IIIrd International Innovative Mining Symposium; https://doi.org/10.1051/e3sconf/20184102025 (дата обращения: 25.08.2021)

11. https://ru.scribd.com/doc/40218529/Petrochemical-Industry-Overview-Chemical-Economics-Handbook-SRI-Consulting (дата обращения: 25.08.2021)

12. https://www.iea.org/reports/the-future-of-petrochemicals (дата обращения: 25.08.2021)

13. https://ihsmarkit.com/products/chemical-technology-pep-ethylene-ethane-steam-cracking-29h.html (дата обращения: 25.08.2021)

14. Wang B. et al. // Journal of Cleaner Production. 2021. V. 295. Р. 126377.

15. Huo H. et al. // Energy. 2021. Р. 120566.

16. Teong S.P., Zhang Y. // Journal of Bioresources and Bioproducts. 2020. V. 5. P. 96-100.

17. Guo J., Zheng D. // Industrial & engineering chemistry research. 2012. V. 51. №. 41. P. 13414-13422.

18. Diercks R. et al. // Chemical Engineering & Technology: Industrial Chemistry‐Plant Equipment‐Process Engineering‐Biotechnology. 2008. V. 31. №. 5. P. 631-637.

19. Mi Y., Zheng D., Jiang X. // Journal of Cleaner Production. 2016. V. 112. P. 1676-1682.

20. Mi Y. et al. // Fuel processing technology. 2014. V. 119. P. 305-315.

21. Mustafa A. et al. // Journal of Energy Chemistry. 2020. V. 49. P. 96-123.

22. Kanniche M. et al. // Applied Thermal Engineering. 2010. V. 30. №. 1. P. 53-62.

23. Bhown A.S., Freeman B.C. // Environmental science & technology. 2011. V. 45. №. 20. P. 8624-8632.

24. Li A. et al. // ACS Sustainable Chemistry & Engineering. 2018. V. 6. №. 8. P. 9560-9565.

25. Li Y. et al. // Industrial & Engineering Chemistry Research. 2016. V. 55. №. 18. P. 5257-5262.

26. Liu Q. et al. // CIESC J. 2013. V. 64. P. 2573-2579.

27. Сафаралеева Р.А. Современные технологии получения ацетилена // Международная научно-практическая конференция молодых исследователей им. Д.И. Менделеева. 2016. С. 158–160.

28. Zhang Q., Wang J., Wang T. // Industrial & Engineering Chemistry Research. 2016. V. 55. №. 30. P. 8383-8394.

29. Yefei L.I.U. et al. // Chinese Journal of Chemical Engineering. 2011. V. 19. №. 3. P. 424-433.

30. Fincke J.R. et al. // Plasma Chemistry and Plasma Processing. 2002. V. 22. №. 1. P. 105-136.

31. Holmen A., Rokstad O.A., Solbakken A. // Industrial & Engineering Chemistry Process Design and Development. 1976. V. 15. №. 3. P. 439-444.

32. Kang H. et al. // Fuel Processing Technology. 2016. V. 148. P. 209-216.

33. Антонов В.Н., Лапидус А.С. Производство ацетилена. М.: Химия, 1970. 415 с.

34. Kopylov S.N., Gubina T.V. // Russian Journal of Physical Chemistry A. 2016. V. 90. №. 1. P. 43-47

35. Likhanov V.A., Rossokhin A.V. // IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2020. V. 734. №. 1. P. 012207.

36. Трошин К.Я., Борисов А.А. // Горение и взрыв. 2017. Т. 10. №. 1. С. 34–38.

37. Chen L. et al. // Proceedings of the Combustion Institute. 2019. V. 37. №. 4. P. 5715-5722.

38. BASF, Preparation of acetylene and synthesis gas, US5789644 A, 1998.

39. HOECHST, GB Patents Nos. 921,305 and 958,046.

40. Трошин К.Я. // Химическая физика. 2019. Т. 38. №. 8. С. 3–11.

41. Li H.F. et al. // Angewandte Chemie. 2018. V. 130. №. 10. P. 2692-2696.

42. Hall K.R., Cantrell J.G., Weber, Jr B.R. // Natural Gas Processing from Midstream to Downstream. 2018. P. 499-507.

43. Zhang Q., Wang J., Wang T. // Industrial & Engineering Chemistry Research. 2017. V. 56. №. 18. P. 5174-5184.

44. Порсин А.В. и др. // Теоретические основы химической технологии. 2014. Т. 48. №. 4. С. 426–433.

45. Wang Z., Zheng D., Jin H. // International journal of hydrogen energy. 2007. V. 32. №. 16. P. 4030-4039.

46. Гарифзянова Г.Г. // Известия высших учебных заведений. Серия: Химия и химическая технология. 2008. Т. 51. № 11. С. 98–100.

47. Zhifang W., Zheng D. // Chinese Journal of Chemical Engineering. 2008. V. 16. №. 5. P. 812-818.

48. Cao S., Wang D., Wang T. // Chemical engineering science. 2010. V. 65. №. 8. P. 2608-2618.

49. Gladish H. // Hydrocarbon Process. Petrol. Refiner. 1962. V. 41. P. 159-164.

50. Slovetskii D.I. // Petroleum Chemistry. 2006. V. 46. №. 5. P. 295-304.

51. Mueller R., Kaske G. // Erdoel Kohle, Erdgas, Petrochem. Brennst.-Chem.;(Germany, Federal Republic of). 1984. V. 37. №. 4.

52. Slovetskii D.I. // High Energy Chemistry. 2006. V. 40. №. 2. P. 86-92.

53. Olsvik O., Rokstad O. A., Holmen A. // Chemical Engineering & Technology: Industrial Chemistry-Plant Equipment-Process Engineering-Biotechnology. 1995. V. 18. №. 5. P. 349-358.

54. Dinh D.K. et al. // RSC advances. 2019. V. 9. №. 56. P. 32403-32413.

55. Krestinin A.V. // Combustion and Flame. 2000. V. 121. №. 3. P. 513-524.

56. Krestinin A.V., Moravsky A.P. // Chemical physics letters. 1998. V. 286. №. 5-6. P. 479-484.

57. Slovetskii D.I. et al. // High Energy Chemistry. 2002. V. 36. №. 1. P. 44-52.

58. An H. et al. // Fuel Processing Technology. 2018. V. 172. P. 195-199.

59. Bao W. et al. // Journal of chemical industry and engineering China. 2008. V. 59. №. 2. P. 472.

60. Kim K.S. et al. // IEEE transactions on plasma science. 2005. V. 33. №. 2. P. 813-823.

61. Juan L. et al. // Plasma Science and Technology. 2003. V. 5. №. 3. P. 1815.

62. Fincke J.R. et al. // Industrial & engineering chemistry research. 2002. V. 41. №. 6. P. 1425-1435.

63. Fincke J.R. et al. // Plasma Chemistry and Plasma Processing. 2002. V. 22. №. 1. P. 105-136.

64. Bolouri K.S., Amouroux J. // Plasma chemistry and plasma processing. 1986. V. 6. №. 4. P. 335-348.

65. Yao S., Nakayama A., Suzuki E. // Catalysis today. 2001. V. 71. №. 1-2. P. 219-223.

66. Li X.S. et al. // Journal of Physics D: Applied Physics. 2008. V. 41 №. 17. P. 175203.

67. Inada Y. et al. // Journal of Physics D: Applied Physics. 2014. V. 47. №. 17. P. 175201.

68. Dors M. et al. // Plasma Chemistry and Plasma Processing. 2014. V. 34. №. 2. P. 313-326.

69. Diamy A.M. et al. // Vacuum. 2001. V. 61. №. 2-4. P. 403-407.

70. Heintze M., Magureanu M. // Journal of applied physics. 2002. V. 92. №. 5. P. 2276-2283.

71. Liu C., Mallinson R., Lobban L. // Journal of catalysis. 1998. V. 179. №. 1. P. 326-334.

72. http://vyazma-gas.ru/index.php/poleznaya-informatsiya/2015-01-25-16-12-15/istoriya-atsetilena (дата обращения: 25.08.2021)

73. Bittner D., Wanzl W. // Fuel Processing Technology. 1990. V. 24. P. 311-316.

74. Peuckert C., Baumann H., Bittner D., Klein J., Juntgen H. Method for production of Acetylene. U.S. Patent 4,378,232, March 29, 1983.

75. Fei W. et al. // Plasma Science and Technology. 2006. V. 8. №. 3. P. 307.

76. Yan B. et al. // Chemical engineering journal. 2012. V. 207. P. 109-116.

77. Jupudi R.S., Zamansky V., Fletcher T.H. // Energy & Fuels. 2009. V. 23. №. 6. P. 3063-3067.

78. Fletcher T.H., Barfuss D., Pugmire R.J. // Energy & Fuels. 2015. V. 29. №. 8. P. 4921-4926.

79. Richards A.P., Fletcher T.H. // Fuel. 2016. V. 185. P. 171-180.

80. Ma J. et al. // Fuel Processing Technology. 2017. V. 167. P. 721-729.

81. Shuang Y. et al. // Energy & Fuels. 2010. V. 24. №. 5. P. 2991-2998.

82. Wu C., Chen J., Cheng Y. // Fuel Processing Technology. 2010. V. 91. №. 8. P. 823-830.

83. Chen L. et al. // Journal of Physics D: Applied Physics. 2009. V. 42. №. 5. P. 055505.

84. Bao W.R., Chang L.P., Lu Y.K. // Process safety and environmental protection. 2006. V. 84. №. 3. P. 222-226.

85. Mueller R., Kirker L., Peuckert C. Process for the production of acetylene and synthesis or reduction gas from coal in an electric arc process. U.S. Patent 4,588,850, May 13, 1986.

86. Berkowitz N. An introduction to coal technology academic press // New York. 1979. V. 36.

87. Peuckert C., Müller R. // Proceedings of the Seventh International Symposium on Plasma Chemistry, ed. CJ Timmermans. 1985. P. 274-279.

88. Yan B., Lu W., Cheng Y. China goes green: cleaner production of chemicals. 2012.

89. Zhang M. et al. // Energies. 2017. V. 10. №. 4. P. 513.

90. Zhang M. et al. // Chemical Engineering and Processing-Process Intensification. 2018. V. 128. P. 257-262.

91. López J.A., Lu C. // IEEE Transactions on Power Systems. 2020. V. 35. №. 5. P. 3459-3469.

92. Arora K. et al. // Mathematics. 2021. V. 9. №. 2. P. 186.


Review

For citations:


Shlyapin D.A., Afonasenko T.N., Glyzdova D.V., Leontieva N.N., Lavrenov A.V. Processes for the production of acetylene in the XXth century. Main trends of their development within the paradigm of low-carbon economy of the future. Kataliz v promyshlennosti. 2022;22(1):20-39. (In Russ.) https://doi.org/10.18412/1816-0387-2022-1-20-39

Views: 997


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)