

Acid activation as a method to control the catalytic properties of montmorillonite in the synthesis of solketal from glycerol and acetone
https://doi.org/10.18412/1816-0387-2022-1-57-66
Abstract
The effect of acid activation using 0.125–0.5 mol/l Н2SO4, HCl and HNO3 on the physicochemical and catalytic properties of natural clay (95 % montmorillonite, Mukhartalinsk deposit) was investigated. The rate and selectivity of the solketal (2,2-dimethyl-4-hydroxymethyl-1,3-dioxolane) synthesis from glycerol and acetone were shown to depend on the concentration and type of the acid. The reaction rate and the yield of solketal increase with increasing concentration of the acid, which is consistent with the growth in the amount of Broensted sites. As the surface acidity increases, the efficiency of the system increases in the series MM/HCl > MM/HNO3 > MM/H2SO4.
About the Authors
O. N. KovalenkoRussian Federation
I. I. Simentsova
Russian Federation
V. N. Panchenko
Russian Federation
M. N. Timofeeva
Russian Federation
References
1. Checa M., Nogales-Delgado S., Montes V., Encinar J.M. // Catalysts. 2020. V. 10. № 1279. Р. 41.
2. Bagnato G., Iulianelli A., Sanna A., Basile A. // Membranes. 2017. V. 7. № 17. Р. 31.
3. Nanda M.R., Yuan Z., Qin W., Xu C. (Charles) // Catalysis Reviews. 2016. V. 8. № 3. P. 309–336.
4. Максимов А.Л., Нехаев А.И., Рамазанов Д.Н. // Нефтехимия. 2015. Т. 55. № 1. С. 3–24.
5. Correa I., Faria R.P.V., Rodrigues A.E. // Sustain. Chem. 2021. V. 2. P. 286–324.
6. Mota C.J.A., Silva C.X.A., Rosenbach N.J., Costa J., Silva F. // Energy Fuels. 2010. V. 24. Р. 2733–2736.
7. US 20090270643 А1, опубл. 29.10.2009, US 6890364 В2, опубл. 10.05.2005.
8. RU 2365617 опубл. 27.08.2009, ЕА 018090, опубл. 30.05.2013, ЕР 2298851, опубл. 08.10.2014.
9. Data Bridge Market Research https://www.databridgemarketresearch.com/reports/global-solketal-market.
10. Ferreira P., Fonseca I.M., Ramosa M., Vital J., Castanheiro J.E. // Appl. Catal. B: Environ. 2010. V. 98. № 1–2. P. 94–99.
11. Nanda M.R., Yuan Z., Qin W., Ghaziaskar H.S., Poirier M-A., Xu C. // Appl. Energy. 2014. V. 123. P. 75–81.
12. Li L., Korányi T.I., Sels B.F., Pescarmona P.P. // Green Chem. 2012. № 6. P. 1611–1619.
13. Amri S., Gomez J., Balea A., Merayo N., Srasra E., Besbes N., Ladero M. // Appl. Sci. 2019. V. 9. № 4488. Р. 21.
14. Timofeeva M.N., Panchenko V.N., Krupskaya V.V., Gil A., Vicente M.A. // Catal. Commun. 2017. V. 90. P. 65–69.
15. Иконникова К.В. Теория и практика рН-метрического определения кислотно-основных свойств поверхности твердых тел: учебное пособие / К.В. Иконникова, Л.Ф. Иконникова, Т.С. Минакова, Ю.С. Саркисов. Томск: Изд-во Томского политехнич. ун-та, 2011. 85 с.
16. Паукштис Е.А. Инфракрасная спектроскопия в гетерогенном кислотном-основном катализе. Новосибирск: Наука, 1992. 254 с.
17. Krupskaya V.V., Zakusin S.V., Tyupina E.A., Dorzhieva O.V., Zhukhlistov A.P., Belousov P.E., Timofeeva M.N. // Minerals. 2017. V. 7. P. 49–64.
18. Olphen H.V., Fripiat J.J. // Minerals. 1999. V. 131. № 1. P. 285–337.
19. Angelini M.M., Garrard R.J., Rosen S.J., Hinrichs R.Z. // J. Phys. Chem. A. 2007. V. 111. № 17. P. 3326–3335.
20. Flessnera U., Jones D.J., Rozière J., Zajac J., Storaro L., Lenarda M., Pavan M., Jiménez-López A., Rodrı́guez-Castellón E., Trombetta M., Busca G. // J. Mol. Catal. A: Chem. 2001. V. 168. P. 247–256.
21. Tyagi B., Chudasama C.D., Jasra R.V. // Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2006. V. 64. P. 273–278.
22. Krupskaya V., Novikova L., Tyupina E., Belousova P., Dorzhieva O., Zakusin S., Kimh K., Roessneri F., Badettij E., Brunellij A., Belchinskay L. // App. Clay Sci. 2019. V. 172. P. 1–10.
23. Финевич В.П., Аллерт Н.А., Карпова Т.Р., Дуплякин В.К. // Рос. хим. журнал (Ж. Рос. хим. об-ва им. Д.И. Менделеева). 2007. T. LI. № 4. С. 69–74.
24. Zatta L., Ramos L. P., Wypych F. // Appl. Clay Sci. 2013. V. 80–81. P. 236–244.
25. Таблица силы кислот [Электронный ресурс] / Режим доступа: http://www.primchem.narod.ru/chemistry/acids.htm. Дата обращения: 15.05.17.
26. Briones-Jurado C., Agacino-Valdés E. // J. Phys. Chem. A. 2009. V. 113. P. 8994–9001. DOI: 10.1021/jp900236r.
27. He H., Guo J., Xie X., Lin H., Li L. // Clay Minerals. 2002. V. 37(02). P. 337–344. DOI:10.1180/000985502372003.
28. Haffad D., Chambellan A., Lavalley J.C. // Catalysis Letters. 1998. V. 54. P. 227–233.
29. Jeon I., Nam K. // Scientific Reports. 2019. V. 9. Article ID 9878. Р. 8.
30. da Silva C.X.A., Mota C.J.A. // Biomass Bioenergy. 2011. V. 35. № 8. P. 3547–3551.
31. Calvino-Casilda V., Stawicka K., Trejda M., Ziolek M., Banares M.A. // J. Phys. Chem. C. 2014. Vol. 118. P. 10780–10791.
32. Marton G.I., Iancu P., Plesu V., Marton A., Soriga S.G. // Rev. Chim. (Bucharest). 2015. V. 66. № 5. P. 750–753.
33. Ozorio L.P., Pianzolli R., Mota M.B., Mota C.J.A. //J. Braz. Chem. Soc. 2012. Vol. 23. No. 5. Р. 931–937.
34. Pierpont A.W., Batista E.R., Martin R.L., Chen W., Kim J.K., Hoyt C.B., Gordon J.C., Michalczyk R., Silks L.A.P., Wu R. // ACS Catal. 2015. V. 5. P. 1013–1019.
Review
For citations:
Kovalenko O.N., Simentsova I.I., Panchenko V.N., Timofeeva M.N. Acid activation as a method to control the catalytic properties of montmorillonite in the synthesis of solketal from glycerol and acetone. Kataliz v promyshlennosti. 2022;22(1):57-66. (In Russ.) https://doi.org/10.18412/1816-0387-2022-1-57-66