

Experimental investigations and kinetics of hydrogen oxidation by oxygen in the media of carbon dioxide under elevated pressure at fiber-glass Pt/Pd catalysts
https://doi.org/10.18412/1816-0387-2022-4-22-27
Abstract
The study is dedicated to the performance of glass-fiber catalysts (GFCs) in the practically important reaction of hydrogen oxidation by oxygen in the media of carbon dioxide at elevated pressures. The samples of the catalysts were synthesized using Pt and Pd as active metals and thermostable high-silica glass-fiber textiles both unpromoted and promoted by Zr. The used catalyst preparation methods include surface thermal synthesis and leaching/impregnation approaches. All three tested samples showed approximately equal activity, but the preference was given to Pt-based GFC synthesized by means of surface thermal synthesis method because it uses the much cheaper and widely available glass-fiber textile instead of rare and expensive Zr-promoted materials. Resource testing of this catalyst for more than 200 hours demonstrated its high stability. The reaction rate may be described by kinetic equation corresponding to mass-action law with linear dependence upon the reaction pressure. The studied GFC may be arranged into structured cartridges with low pressure drop and highly intensive heat and mass transfer under the commercial process conditions, so its further practical application looks promising.
About the Authors
A. N. ZagoruikoRussian Federation
S. A. Lopatin
Russian Federation
P. E. Mikenin
Russian Federation
A. V. Elyshev
Russian Federation
References
1. Łomot D., Karpiński Z. // Res. Chem. Intermed. 2015. Vol. 41. P. 9171–9179. https://doi.org/10.1007/s11164-015-1935-3.
2. Russell A.E., Ball S.C., Maniguet S., Thompsett D. // J. Power Sources. 2007. Vol. 171. P. 72–78. https://doi.org/10.1016/j.jpowsour.2007.02.050.
3. Balzhinimaev B.S., Paukshtis E.A., Vanag S.V., Suknev A.P., Zagoruiko A.N. // Catal. Today. 2010. Vol. 151. P. 195–199. http://dx.doi.org/10.1016/j.cattod.2010.01.011
4. Барелко В.В., Юранов И.А., Черашев А.Ф., Хрущ А.П., Матышак В.А., Хоменко Т.И., Сильченкова О.Н., Крылов О.В. // Доклады Академии наук. 1998. Т. 361. С. 485−488.
5. Kiwi-Minsker L., Yuranov I., Siebenhaar B., Renken A. // Catal. Today. 1999. Vol. 54. P. 39–46. https://doi.org/10.1016/S0920-5861(99)00165-0
6. Matatov-Meytal Y., Sheintuch M. // Appl. Catal. A: Gen. 2002. Vol. 231. P. 1–16. https://doi.org/10.1016/S0926-860X(01)00963-2.
7. Reichelt E., Heddrich M.P., Jahn M., Michaelis A. // Appl. Catal. A: Gen. 2014. Vol. 476. P. 78–90. https://doi.org/10.1016/j.apcata.2014.02.021.
8. Загоруйко А.Н., Лопатин С.А. Структурированные каталитические системы на основе стекловолокнистых катализаторов. Новосибирск : Изд-во НГТУ, 2018. 204 с.
9. Лопатин С.А., Цырульников П.Г., Котолевич Ю.С., Микенин П.Е., Писарев Д.А., Загоруйко А.Н. // Катализ в промышленности. 2015. № 3. С. 67−72. https://doi.org/10.18412/1816-0387-2015-3-67-72.
10. Lopatin S., Elyshev A., Zagoruiko A. // Catal. Today. 2022. Vol. 383. P. 259–265. https://doi.org/10.1016/j.cattod.2021.02.010.
11. Zagoruiko A.N., Lopatin S.A., Mikenin P.E., Pisarev D.A.,. Zazhigalov S.V., Baranov D.V. // Chemical Engineering and Processing: Process Intensification. 2017. Vol. 122. P. 460–472. https://doi.org/10.1016/j.cep.2017.05.018.
12. Xanthopoulou G., Vekinis G. // Appl. Catal. B: Environ. 1998. Vol. 19, No. 1. P. 37–44. https://doi.org/10.1016/S0926-3373(98)00056-3
13. Specchia S., Civera A., Saracco G. // Chem. Eng. Sci. 2004, Vol. 59, No. 22/23. P. 5091–5098. https://doi.org/10.1016/j.ces.2004.08.028
14. Завьялова У.Ф., Третьяков В.Ф., Бурдейная Т.Н., Лунин В.В., Шитова Н.Б., Рыжова Н.Д., Шмаков А.Н., Низовский А.И., Цырульников П.Г. // Кинетика и катализ. 2005. Т. 46, № 5. С. 795−800. https://doi.org/10.1007/s10975-005-0132-6
15. Fino D., Russo N., Saracco G., Specchia V. // J. Catal. 2006. Vol. 242, No. 1. P. 38–47. https://doi.org/10.1016/j.jcat.2006.05.023
16. K. Morsi // J. Mater. Sci. 2012. Vol. 47, No. 1. P. 68–92. http://dx.doi.org/10.1007/s10853-011-5926-5
17. Yadav G.D., Ajgaonkar N.P., Varma A. // J. Catal. 2012. Vol. 292. P. 99–110. https://doi.org/10.1016/j.jcat.2012.05.004
18. Postole G., Nguyen T.-S., Aouine M., Gélin P., Cardenas L., Piccolo L. // Appl. Catal. B: Environ. 2015. Vol. 166/167. P. 580–591. https://dx.doi.org/10.1016/j.apcatb.2014.11.024
19. Desyatikh I.V., Vedyagin A.A., Kotolevich Yu.S., Tsyrul’nikov P.G. // Combust. Explos. Shock Waves. 2011. Vol. 47, P. 677–682. https://doi.org/10.7868/S0453881112060019
20. Котолевич Ю.С., Супрун Е.А., Шарафутдинов М.Р., Цырульников П.Г., Саланов А.Н., Гончаров В.Б. // Изв. высш. учеб. заведений. Физика. 2011. Т. 54, № 12/2. С. 48–53.
21. Афонасенко Т.Н., Цырульников П.Г., Гуляева Т.И., Леонтьева Н.Н., Смирнова Н.С., Кочубей Д.И., Мироненко О.О., Свинцицкий Д.А., Боронин А.И., Котолевич Ю.С., Супрун Е.А., Саланов А.Н. // Кинетика и катализ. 2013. Т. 54, № 1. С. 61−70. https://doi.org/10.7868/S0453881112060019
22. Kotolevich Y.S., Khramov E.V., Mironenko O.O., Zubavichus Ya.V., Murzin V.Yu., Frey D.I., Metelev S.E., Shitova N.B., Tsyrulnikov P.G. // Int. J. Self-Propag. High-Temp. Synth. 2014. Vol. 23, No. 1. P. 9–17. https://doi.org/10.3103/S1061386214010075
23. Kotolevich Y.S., Mamontov G.V., Vodyankina O.V., Petrova N.I., Smirnova N.S., Tsyryul’nikov P.G., Trenikhin M.V., Nizovskii A.I., Kalinkin A.V., Smirnov M.Y., Goncharov V.B. // Int. J. Self-Propag. High-Temp. Synth. 2017. Vol. 26, No. 4. P. 234–239. https://doi.org/10.3103/S1061386217040045
Review
For citations:
Zagoruiko A.N., Lopatin S.A., Mikenin P.E., Elyshev A.V. Experimental investigations and kinetics of hydrogen oxidation by oxygen in the media of carbon dioxide under elevated pressure at fiber-glass Pt/Pd catalysts. Kataliz v promyshlennosti. 2022;22(4):22-27. (In Russ.) https://doi.org/10.18412/1816-0387-2022-4-22-27