Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

The effect of iron oxide content in bentonite clay in the catalytic composition on the distribution of sulfur in the cracking products of the model sulfur-containing feedstock

https://doi.org/10.18412/1816-0387-2022-4-58-65

Abstract

The study revealed the effect of a clay with different content of iron oxides introduced into the cracking catalyst composition on the distribution of feedstock sulfur in the products and on the amount of sulfur oxides formed upon regeneration of the coked catalyst after cracking of the model sulfur-containing feedstock with a sulfur content of 10 000 ppm from 2-methylthiophene or benzothiophene. The use of a sulfur compound with a higher molecular weight increased the fraction of the feedstock sulfur passing into liquid products and coke. When iron oxidecontent in the catalyst was increased from 0.61 to 1.53 wt.% upon cracking of the model feedstock, the yield of liquid products increased, the conversion of model hydrocarbon decreased, and the yield of coke on the catalyst grew from 3.8 to 5.2 wt.%; in the process, the fraction of the feedstock sulfur that passed into SO2 increased fourfold.

About the Authors

T. V. Bobkova
Center of New Chemical Technologies BIC SB RAS, Omsk
Russian Federation


K. I. Dmitriev
Center of New Chemical Technologies BIC SB RAS, Omsk
Russian Federation


O. V. Potapenko
Center of New Chemical Technologies BIC SB RAS, Omsk
Russian Federation


V. P. Doronin
Center of New Chemical Technologies BIC SB RAS, Omsk
Russian Federation


T. P. Sorokina
Center of New Chemical Technologies BIC SB RAS, Omsk
Russian Federation


References

1. Gholami Z., Gholami F., Tišler Z., Tomas M., Vakili M. // Energies. 2021. V. 14. № 4. P. 1089. doi: 10.3390/en14041089.

2. Cheng W.C., Habib Jr. E.T., Rajagopalan K., Roberie T.G., Wormsbecher R.F., Ziebarth M.S. // Handbook of Heterogeneous Catalysis. 2008. V. 9. P. 2741–2778.

3. Zhang T., Lin Q., Xue Z., Munson R., Magneschi G. // Energy Procedia. 2017. V. 114. P. 5869–5873. doi: 10.1016/j.egypro.2017.03.1724.

4. De Mello L.F., Pimenta R.D.M., Moure G.T., Pravia O.R.C., Gearhart L., Milios P.B., Melien T. // Energy Procedia. 2009. V. 1. P. 117–124. doi: 10.1016/j.egypro.2009.01.018.

5. Cantú M., López-Salinas E., Valente J.S., Montiel R. // Environmental Science & Technology. 2005. V. 39. P. 9715–9720. doi: 10.1021/es051305m.

6. Каминский Э.Ф., Хавкин В.А. Глубокая переработка нефти: технологический и экологический аспекты. М.: Техника, 2001. 384 с.

7. Нефедов Б.К., Радченко Е.Д., Алиев Р.Р. Катализаторы процессов углубленной переработки нефти. М.: Химия, 1992. 265 с.

8. Maholland M.K. // Petroleum Technology Quarterly. 2004. V. 9. № 3. P. 71–75.

9. Can F., Travert A., Ruaux V., Gilson J.-P., Maugé F., Hu R., Wormsbecher R.F. // Journal of Catalysis. 2007. V. 249. № 1. P. 79–92. doi: 10.1016/j.jcat.2007.04.001.

10. Потапенко О.В., Доронин В.П., Сорокина Т.П. // Нефтехимия. 2012. Т. 52. № 1. С. 60–65.

11. Potapenko O.V., Doronin V.P., Sorokina T.P., Talsi V.P., Likholobov V.A. // Applied Catalysis B: Environmental. 2012. V. 117–118. P. 177–184. doi: 10.1016/j.apcatb.2012.01.014.

12. Harding R.H., Peters A.W., Nee J.R.D. // Applied Catalysis A: General. 2001. V. 221. № 1–2. P. 389–396. doi: 10.1016/S0926-860X(01)00814-6.

13. Siddiqui M.A.B., Aitani A.M. // Petroleum Science and Technology. 2007. V. 25. № 3. P. 299–313. doi: 10.1081/LFT-200063072.

14. Wang J., Chen L., Cheng L. // Journal of Molecular Catalysis A: Chemical. 1999. V. 139. P. 315–323. doi: 10.1016/S1381-1169(98)00205-2.

15. Jiang L., Wei M., Xiangyu X., Lin Y., Lü Z., Song J., Duan X. // Industrial & Engineering Chemistry Research. 2011. V. 50. № 8. P. 4398–4404. doi: 10.1021/ie102243y.

16. Bhattacharyya A., Yoo J.S. // Studies in Surface Science and Catalysis. 1993. V. 76. P. 531–562. doi: 10.1016/S0167-2991(08)63837-9.

17. Jae L.S., Jun H.K., Jung S.Y., Lee T.J., Ryu C.K., Kim J.C. // Industrial & engineering chemistry research. 2005. V. 44. № 26. P. 9973–9978. doi: 10.1021/ie050607u.

18. Valente J.S., Quintana-Solorzano R. // Energy & Environment Science. 2011. V. 4. P. 4096–4107. doi: 10.1039/c1ee01197a.

19. Waqif M., Saur O., Lavalley J.C., Wang Y., Morrow B.A. // Applied Catalysis. 1991. V. 71. I. 2. P. 319–331. doi: 10.1016/0166-9834(91)85089-E.

20. Доронин В.П., Сорокина Т.П. // Российский химический журнал. 2007. Т. 51. № 4. С. 23–28.

21. Vogt E.T.C., Weckhuysen B.M. // Chemical Society Reviews. 2015. V. 44. P. 7342–7370. doi: 10.1039/C5CS00376H.

22. Доронин В.П., Сорокина Т.П., Дуплякин В.К., Пармон В.Н., Горденко В.И., Храпов В.В. // Катализ в промышленности. 2003. № 2. С. 37–48.

23. Доронин В.П., Сорокина Т.П. // Нефтепереработка и нефтехимия. 2000. № 11. С. 22–25.

24. Sadeghbeigi R. Fluid catalytic cracking handbook. Houston, TX: Gulf publishing company, 1995. 208 р.


Review

For citations:


Bobkova T.V., Dmitriev K.I., Potapenko O.V., Doronin V.P., Sorokina T.P. The effect of iron oxide content in bentonite clay in the catalytic composition on the distribution of sulfur in the cracking products of the model sulfur-containing feedstock. Kataliz v promyshlennosti. 2022;22(4):58-65. (In Russ.) https://doi.org/10.18412/1816-0387-2022-4-58-65

Views: 237


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)