Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Catalytic Hydrogen Storage Systems Based on Hydrogenation-Dehydrogenation Reactions

https://doi.org/10.18412/1816-0387-2022-5-15-25

Abstract

Hydrogen accumulation, storage and production systems are the important direction in the development of fundamental and applied aspects of alternative energy. Liquid organic hydrogen carriers (LOHC), polycyclic forms of the corresponding aromatic compounds, are an efficient way of hydrogen storage and release with a hydrogen content of up to 7.3 mas.%. This article compares LOHC as potential substrates for hydrogen storage and hydrogen evolution based on catalytic hydrogenation-dehydrogenation reactions, including cyclohexane, methylcyclohexane, decalin, perhydroterphenyl, bicyclohexyl, perhydrodibenzyltoluene and perhydroethylcarbazole. For each of the perhydrogenated substrates, data on the activity and selectivity of Pt-containing dehydrogenation catalysts are presented.

About the Authors

А. N. Kalenchuk
N.D. Zelinsky Institute of Organic Chemistry RAS, Moscow; Chemistry Department, Moscow State University
Russian Federation


V. I. Bogdan
N.D. Zelinsky Institute of Organic Chemistry RAS, Moscow; Chemistry Department, Moscow State University
Russian Federation


References

1. Rao P.Ch., Yoon M. // Energies. 2020. V. 13. P. 6040–6062. DOI: 10.3390/en13226040.

2. Sekine Y., Higo T. // Topics in Catalysis. 2021. V. 64. P. 470–480. DOI: 10.1007/s11244-021-01452-x.

3. Cho J.-Y., Kim H., O J.-E., Park B.Y. // Catalysts. 2021. V. 11. P. 14971525. DOI: 10.3390/ catal11121497.

4. Preuster P., Papp Ch., Wasserscheid P. // Acc. Chem. Res. 2017. V. 50. P. 74−85. DOI: 10.1021/acs.accounts.6b00474.

5. Niermann M., Beckendorf A., Kaltschmitt M., Bonhof K. // Int. J. Hydrogen Energy. 2019. V. 44. P. 6631–6654.

6. Gianotti E., Taillades-Jacquin M., Rozière J., Jones D.J. // ACS Catal. 2018. V. 8. P. 4660–4680.

7. He T., Pachfule P., Wu H., Xu Q., Chen P. // Nat. Rev. Mater. 2016. V. 1. P. 16059–16075.

8. Кustov L.M., Кalenchuk A.N., Bogdan V.I. // Rus. Chem. Rev. 2020. V. 89. N. 6. P. 897–916. DOI: 10/1070/RCR4940.

9. Taube M., Rippin D.W.T., Cresswell D.L., Knecht W. // Int. J. Hydrogen Energy. 1983. V. 8. P. 213–225.

10. Biniwale R.B., Rayalu S., Devotta S., Ichikawa M. // Int. J. Hydrogen Energy. 2008. V. 33. P. 360–365.

11. Zhu Q.-L., Xu Q. // Energy Environ. Sci. 2015. V. 8. P. 478–512.

12. Shukla A.A., Gosavi P.V., Pande J.V., Kumar V.P., Chary K.V.R., Biniwale R.B. // Int. J. Hydrogen Energy. 2010. V. 35. P. 4020–4026.

13. Itoh N., Xu W.C., Hara S., Sakaki K. // Catal. Today. 2000. V. 56. P. 307–314.

14. Kariya N., Fukuoka A., Ichikawa M. // Appl. Catal. A. 2002. V. 233. P. 91–102.

15. Klvana D., Chaouki J., Kusohorsky D., Chavarie C., Pajonk G.M. // Appl. Catal. 1988. V. 42. V. 121–130.

16. Schildhauer T., Newson E., Müller S. // J. Catal. 2001. V. 198. P. 355–358.

17. Makaryan I.A., Sedova I.V., Maksimov A.L. // Rus. J. Appl. Chem. 2020. V. 93. N. 12. P. 1815–1830. DOI: 10.1134/S1070427220120034.

18. Cromwell D.K., Vasudevan P.T., Pawelec B., Fierro J.L.G. // Catal. Today. 2016. V. 259. P. 119–129. DOI: 10.1016/j.cattod.2015.05.030.

19. Manabe S., Yabe T., Nakano A., Nagatake S., Higo T., Ogo S., Nakai H., Sekine Y. // Chem. Phys. Lett. 2018. V. 711. P. 73–76. DOI: 10.1016/j.cplett.2018.09.026.

20. Yan J., Wang W., Miao L., Wu K., Chen G., Huang Y., Yang Y. // Int. J. Hydrogen Energy. 2018. V. 43. N. 19. P. 9343–9352. DOI: 10.1016/j.ijhydene.2018.04.003.

21. U.S. Patent 7 101530 B2, 2005.

22. Kariya N., Fukuoka A., Utagawa T., Sakuramoto M., Got Y., Ichikawa M. // Appl. Catal. A: Gen. 2003. V. 247. P. 247–259.

23. Hodoshima S., Arai H., Takaiwa S., Saito Y. // Int. J. Hydrogen Energy. 2003. V. 28. P. 1255–1262.

24. Hodoshima S., Nagata H., Yasukazu S. // Appl. Catal. A: Gen. 2005. V. 292. P. 90–96.

25. Li X., Tuo Y., Li P., Duan X., Jiang H., Zhou X. // Carbon. 2014. V. 67 P. 775–783.

26. Jiang N., Rao K.S.R., Jin M.-J., Park S.-E. // Appl. Catal. A. 2012. V. 425–426. P. 62–67.

27. Sebastian D., Bordeje E.G., Calvillo L., Lazaro M.J., Moliner R. // Int. J. Hydrogen Energy. 2008. V. 33. P. 1329–1334.

28. Wang Bo, Goodman D.W., Froment G.F. // J. Catalysis. 2008. V. 253. P. 229–238.

29. Amende M., Gleichweit C., Werner K., Schernich S., Zhao W., Lorenz M.P.A., Höfert O., Papp C., Koch M., Wasserscheid P., Laurin M., Steinrück H.-P., Libuda J. // ACS Catal. 2014. V. 4. P. 657–665.

30. Amende M., Gleichweit C., Schernich S., Höfert O., Lorenz M.P.A., Zhao W., Koch M., Obesser K., Papp C., Wasserscheid P., Steinrück H.-P., Libuda J. // J. Phys. Chem. Lett. 2014. V. 5. P. 1498–1504.

31. Eblagon K.M., Tam K., Kerry Yu.K.M., Zhao S., Gong X-Q., He H. // J. Phys. Chem. C. 2010. V. 114. P. 9720–9730.

32. Crawford P., Burch R., Hardacre C., Hindle K., Hu P., Kalirai B. // J. Phys. Chem. 2007. V. 111. P. 6434–6439.

33. Yang M., Dong Y., Fei S., Ke H., Cheng H. // Int. J. Hydrogen Energy. 2014. V. 39. P. 18976–18983.

34. Feng Z., Chen X., Bai X. // Environ Sci. Pollut. Res. 2020. V. 27. P. 36172–36185.

35. Moores A., Poyatos M., Luo Y., Crabtree R.H. // New J. Chem. 2006. V. 30. P. 1675–1678.

36. Sung J.S., Choo K.Y., Kim T.H., Tarasov A.L., Tkachenko O.P., Kustov L.M. // Int. J. Hydrogen Energy. 2008. V. 33. P. 2721–2728. DOI: 10.1016/j.ijhydene.2008.03.037.

37. Кalenchuk А.N., Bogdan V.I., Dunaev S.F., Кustov L.М. // Fuel. 2020. V. 280. N. 15. P. 118625. DOI: 10.1016/j.fuel.2020.118625.

38. Кustov L.M., Кalenchuk A.N., Dunaev S.F., Bogdan V.I. Mendeleev Commun. 2019. V. 29. P. 25–28. DOI: 10.1016/j.mencom.2019.01.007.

39. Кalenchuk А.N., Bogdan V.I., Dunaev S.F., Кustov L.М. // Chem. Eng. Technol. 2018. V. 41. N. 9. P. 1842–1846. DOI: 10.1002/ceat.201800312.

40. Кalenchuk А.N., Bogdan V.I., Кustov L.М. // Катализ в промышленности. 2014. Т. 6. С. 59–63. DOI: 10.1134/S2070050415010080.

41. Каленчук А.Н., Давшан Н.А., Богдан В.И., Дунаев С.Ф., Кустов Л.М. // Известия АН. Серия химическая. 2018. Т. 1. С. 28–32. DOI: 10.1007/s11172-018-2032-8.

42. Кalenchuk А.N., Bogdan V.I., Dunaev S.F., Кustov L.М. // Int. J. Hydrogen Energy. 2018. V. 43. P. 6191–6196. DOI: 10.1016/j.ijhydene.2018.01.121.

43. Кalenchuk А.N., Bogdan V.I., Dunaev S.F., Кustov L.М. // Fuel Processing Technology. 2018. V. 169. P. 94–100. DOI: 10/1016/j.fuproc.2017.09.023.

44. Кalenchuk А.N., Кustov L.М. // Molecules. 2022. V. 27. N. 7. P. 2236–2242. DOI: 10.3390/molecules27072236.

45. Bogdan V.I., Kalenchuk A.N., Chernavsky P.А., Bogdan T.V., Mishanin I.I., Kustov L.M. // Int. J. Hydrogen Energy. 2021. V. 46. N. 1. P. DOI: 10.1016/j.ijhydene.2021.01.208.

46. Jang M., Jo Y.S., Lee W.J., Shin B.S., Sohn H., Jeong H., Jang S.C., Kwak S.K., Kang J.W., Yoon C.W. // ACS Sustain. Chem. Eng. 2019. V. 7. P. 1185–1194.

47. Jorschick H., Bösmann A., Preuster P., Wasserscheid P. // ChemCatChem. 2018. V. 10. P. 4329–4337.

48. Bruckner N., Obesser K., Bosmann A., Teichmann D., Arlt W., Dungs J. // ChemSusChem. 2014. V. 7. P. 229–235.

49. Ouma C.N.M., Modisha P.M., Bessarabov D. // Comput. Mater. Sci. 2020. V. 172. P. 109332.

50. Lee S., Lee J., Kim T., Han G., Lee J., Lee K., Bae J. // Int. J. Hydrogen Energy. 2021. V. 46. P. 5520–5529.

51. Shi L., Zhou Y., Qi S., Smith K.J., Tan X., Yan J., Yi C. // ACS Catal. 2020. V. 10. N. 18. P. 10661–10671.

52. Aakko-Saksa P.T., Vehkamäki M., Kemell M., Keskiväli L., Simell P., Reinikainen M., Tapper U., Repo T. // Chem. Commun. 2020. V. 56. N. 11. P. 1657–1660.

53. Shi L., Qi S., Qu J., Che T., Yi C., Yang B. // Int. J. Hydrogen Energy. 2019. V. 44. P. 5345–5354.

54. Geißelbrecht M., Mrusek S., Müller K., Preuster P., Bösmann A., Wasserscheid P. // Energy Environ. Sci. 2020. V. 13. P. 3119–3128.

55. Jorschick H., Geißelbrecht M., Eßl M., Preuster P., Bösmann A., Wasserscheid P. // Int. J. Hydrogen Energy. 2020. V. 45. P. 14897–14906.

56. Preuster P., Papp Ch., Wasserscheid P. // Acc. Chem. Res. 2017. V. 50. P. 74−85.

57. Auer F., Blaumeiser D., Bauer T., Bösmann A., Szesni N., Libuda J., Wasserscheid P. // Catal. Sci. Technol. 2019. V. 9. N. 13. P. 3537–3547. DOI: 10.1039/c9cy00817a.

58. Nagatake S., Higo T., Ogo S., Sugiura Y., Watanabe R., Fukuhara C., Sekine Y. // Catal. Lett. 2016. V. 146. N. 1. P. 54–60.

59. Sugiura Y., Nagatsuka T., Kubo K., Hirano Y., Nakamura A., Miyazawa K., Iizuka Y., Furuta S., Iki H., Higo T., Sekine Y. // Chem. Lett. 2017. V. 46. N. 11. P. 1601–1604.

60. Yang X., Song Y., Cao T., Wang L., Song H., Lin W. // Mol. Catal. 2020. V. 492. P. 110971.

61. Yan J., Wang W., Miao L., Wu K., Chen G., Huang Y., Yang Y. // Int. J. Hydrogen Energy. 2018. V. 43. N. 19. P. 9343–9352. DOI: 10.1016/j.ijhydene.2018.04.003.


Review

For citations:


Kalenchuk А.N., Bogdan V.I. Catalytic Hydrogen Storage Systems Based on Hydrogenation-Dehydrogenation Reactions. Kataliz v promyshlennosti. 2022;22(5):15-25. (In Russ.) https://doi.org/10.18412/1816-0387-2022-5-15-25

Views: 535


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)