

Regularities in the Simultaneous Conversion of Phenol and Tetralin During Catalytic Cracking
https://doi.org/10.18412/1816-0387-2022-5-53-60
Abstract
A phenol–tetralin model mixture was used to investigate the effect of the oxygen-containing compound on the cracking of aromatic hydrocarbon. The analysis of temperature dependences of the cracking rate constant for tetralin and tetralin in a mixture with phenol indicates that the cracking of tetralin is hindered in the case of its simultaneous conversion with the oxygen-containing compound due to higher adsorptivity of phenol on the catalyst surface. It was found that the presence of phenol in the model mixture changes the composition of liquid products, especially at a low cracking temperature. In addition, the effect of water on conversion of the phenol–tetralin mixture was studied. The presence of water in the model feedstock was shown to decrease the hindering of the aromatic hydrocarbon cracking by the oxygencontaining compound. The results of catalytic transformations revealed that the addition of water increased total conversion of the mixture and conversion of tetralin irrespective of temperature. Essential qualitative differences in the distribution of cracking products of the model mixtures containing or not containing water were not found.
About the Authors
P. V. LipinRussian Federation
V. P. Doronin
Russian Federation
O. V. Potapenko
Russian Federation
T. P. Sorokina
Russian Federation
References
1. Rathore V., Newalkar B.L., Badoni R.P. // Energy for Sustainable Development. 2016. V. 31. Р. 24–49. https://doi.org/10.1016/j.esd.2015.11.003
2. Alaei S., Haghighi M., Rahmanivahid B., Shokrani R., Naghavi H. // Renewable Energy. 2020. V. 154. P. 1188–1203. https://doi.org/10.1016/j.renene.2020.03.039
3. Naji S.Z., Tye C.T., Abd A.A. // Process Biochemistry. 2021. V. 109. P. 148–168. https://doi.org/10.1016/j.procbio.2021.06.020
4. Melero J.A., Clavero M.M., Calleja G., Garcia A., Miravalles R. and Galindo T. // Energy Fuels. 2010. V. 24. № 1. P. 707–717. https://doi.org/10.1021/ef900914e
5. Ardebili S.M.S., Khademalrasoul A. // J. of Cleaner Production. 2018. V. 204. P. 819–831. https://doi.org/10.1016/j.jclepro.2018.09.031
6. Gomez J.A., Höffner K., Barton P.I. // Chemical Engineering Science. 2021. V. 239. P. 116615. https://doi.org/10.1016/j.ces.2021.116615
7. Karimi-Maleh H., Rajendran S., Vasseghian Y., Dragoi E.-N. // Fuel. 2022. V. 314. P. 122762. https://doi.org/10.1016/j.fuel.2021.122762
8. Saravanan A., Kumar P.S., Jeevanantham S., Karishma S., Vo D.-V.N. // Bioresource Technology. 2022. V. 344. P. 126203. https://doi.org/10.1016/j.biortech.2021.126203
9. Zhang Q., Chang J., Wang T., Xu Y. // Energy Conversion and Management. 2007. V. 48. № 1. P. 87–92. https://doi.org/10.1016/j.enconman.2006.05.010
10. Яковлев В.А., Быкова М.В., Хромова С.А. // Катализ в промышленности. 2012. № 4. С. 48–66. (Yakovlev V.A., Bykova M.V., Khromova S.A. // Catalysis in Industry. 2012. V. 4. № 4. P. 324–339.)
11. Tan S., Zhang Z., Sun J., Wang Q. // Chinese J. of Catalysis. 2013. V. 34. № 4. P. 641–650. https://doi.org/10.1016/S1872-2067(12)60531-2
12. Choi H.S., Meier D. // J. of Analytical and Applied Pyrolysis. 2013. V. 100. P. 207–212. https://doi.org/10.1016/j.jaap.2012.12.025
13. Lu Q., Li W.-Z., Zhu X.-F. // Energy Conversion and Management. 2009. V. 50. № 5. P. 1376–1383. https://doi.org/10.1016/j.enconman.2009.01.001
14. Mortensen P.M., Grunwaldt J.-D., Jensen P.A., Knudsen K.G., Jensen A.D. // Applied Catalysis A: General. 2011. V. 407. № 1–2. P. 1–19. https://doi.org/10.1016/j.apcata.2011.08.046
15. Wildschut J., Mahfud F.H., Venderbosch R.H., Heeres H.J. // Industrial & Engineering Chemistry Research. 2009. V. 48. № 23. P. 10324–10334. https://doi.org/10.1021/ie9006003
16. Ardiyanti A.R., Khromova S.A., Venderbosch R.H., Yakovlev V.A., Melián-Cabrera I.V., Heeres H.J. // Applied Catalysis A: General. 2012. V. 449. P. 121–130. https://doi.org/10.1016/j.apcata.2012.09.016
17. Corma A., Huber G.W., Sauvanaud L., O'Connor P. // J. of Catalysis. 2007. V. 247. № 2. P. 307–327. https://doi.org/10.1016/j.jcat.2007.01.023
18. Fogassy G., Thegarid N., Toussaint G., van Veen A.C., Schuurman Y., Mirodatos C. // Applied Catalysis B: Environmental. 2010. V. 96. № 3–4. P. 476–485. https://doi.org/10.1016/j.apcatb.2010.03.008
19. Bryden K., Weatherbee G., and Habib Jr. E.T. // 17th International zeolite conference – IZC 17. Moscow. Russia. July 7–12. 2013. Volume A. P. 30.
20. Graça I., Comparot J.-D., Laforge S., Magnoux P., Lopes J.M., Ribeiro M.F., Ribeiro F.R. // Applied Catalysis A: General. 2009. V. 353. № 1. P. 123–129. https://doi.org/10.1016/j.apcata.2008.10.032
21. Graça I., Fernandes A., Lopes J.M., Ribeiro M.F., Laforge S., Magnoux P., Ribeiro F.R. // Fuel. 2011. V. 90. № 2. P. 467–476. https://doi.org/10.1016/j.fuel.2010.09.028
22. Доронин В.П., Сорокина Т.П. // Российский химический журнал. 2007. Т. 51. № 4. С. 23–29. (Doronin V.P., Sorokina T.P. // Russian Journal of General Chemistry. 2007. V. 77. № 12. P. 2224–2231.)
23. Mostad H.B., Riis T.U., Ellestad O.H. // Applied Catalysis. 1990. V. 63. № 1. P. 345–364. https://doi.org/10.1016/S0166-9834(00)81724-8
24. Townsend A.T., Abbot J. // Applied Catalysis A: General. 1992. V. 90. № 2. P. 97–115. https://doi.org/10.1016/0926-860X(92)85051-C
25. Corma A., Bermúdez O., Martı́nez C., Ortega F.J. // Applied Catalysis A: General. 2002. V. 230. № 1–2. P. 111–125. https://doi.org/10.1016/S0926-860X(01)01000-6
26. Corma A., Marie O., Ortega F.J. // Journal of Catalysis. 2004. V. 222. № 2. P. 338–347. https://doi.org/10.1016/j.jcat.2003.11.006
Review
For citations:
Lipin P.V., Doronin V.P., Potapenko O.V., Sorokina T.P. Regularities in the Simultaneous Conversion of Phenol and Tetralin During Catalytic Cracking. Kataliz v promyshlennosti. 2022;22(5):53-60. (In Russ.) https://doi.org/10.18412/1816-0387-2022-5-53-60