Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Regularities in the Simultaneous Conversion of Phenol and Tetralin During Catalytic Cracking

https://doi.org/10.18412/1816-0387-2022-5-53-60

Abstract

A phenol–tetralin model mixture was used to investigate the effect of the oxygen-containing compound on the cracking of aromatic hydrocarbon. The analysis of temperature dependences of the cracking rate constant for tetralin and tetralin in a mixture with phenol indicates that the cracking of tetralin is hindered in the case of its simultaneous conversion with the oxygen-containing compound due to higher adsorptivity of phenol on the catalyst surface. It was found that the presence of phenol in the model mixture changes the composition of liquid products, especially at a low cracking temperature. In addition, the effect of water on conversion of the phenol–tetralin mixture was studied. The presence of water in the model feedstock was shown to decrease the hindering of the aromatic hydrocarbon cracking by the oxygencontaining compound. The results of catalytic transformations revealed that the addition of water increased total conversion of the mixture and conversion of tetralin irrespective of temperature. Essential qualitative differences in the distribution of cracking products of the model mixtures containing or not containing water were not found.

About the Authors

P. V. Lipin
Center of New Chemical Technologies BIC SB RAS, Omsk
Russian Federation


V. P. Doronin
Center of New Chemical Technologies BIC SB RAS, Omsk
Russian Federation


O. V. Potapenko
Center of New Chemical Technologies BIC SB RAS, Omsk
Russian Federation


T. P. Sorokina
Center of New Chemical Technologies BIC SB RAS, Omsk
Russian Federation


References

1. Rathore V., Newalkar B.L., Badoni R.P. // Energy for Sustainable Development. 2016. V. 31. Р. 24–49. https://doi.org/10.1016/j.esd.2015.11.003

2. Alaei S., Haghighi M., Rahmanivahid B., Shokrani R., Naghavi H. // Renewable Energy. 2020. V. 154. P. 1188–1203. https://doi.org/10.1016/j.renene.2020.03.039

3. Naji S.Z., Tye C.T., Abd A.A. // Process Biochemistry. 2021. V. 109. P. 148–168. https://doi.org/10.1016/j.procbio.2021.06.020

4. Melero J.A., Clavero M.M., Calleja G., Garcia A., Miravalles R. and Galindo T. // Energy Fuels. 2010. V. 24. № 1. P. 707–717. https://doi.org/10.1021/ef900914e

5. Ardebili S.M.S., Khademalrasoul A. // J. of Cleaner Production. 2018. V. 204. P. 819–831. https://doi.org/10.1016/j.jclepro.2018.09.031

6. Gomez J.A., Höffner K., Barton P.I. // Chemical Engineering Science. 2021. V. 239. P. 116615. https://doi.org/10.1016/j.ces.2021.116615

7. Karimi-Maleh H., Rajendran S., Vasseghian Y., Dragoi E.-N. // Fuel. 2022. V. 314. P. 122762. https://doi.org/10.1016/j.fuel.2021.122762

8. Saravanan A., Kumar P.S., Jeevanantham S., Karishma S., Vo D.-V.N. // Bioresource Technology. 2022. V. 344. P. 126203. https://doi.org/10.1016/j.biortech.2021.126203

9. Zhang Q., Chang J., Wang T., Xu Y. // Energy Conversion and Management. 2007. V. 48. № 1. P. 87–92. https://doi.org/10.1016/j.enconman.2006.05.010

10. Яковлев В.А., Быкова М.В., Хромова С.А. // Катализ в промышленности. 2012. № 4. С. 48–66. (Yakovlev V.A., Bykova M.V., Khromova S.A. // Catalysis in Industry. 2012. V. 4. № 4. P. 324–339.)

11. Tan S., Zhang Z., Sun J., Wang Q. // Chinese J. of Catalysis. 2013. V. 34. № 4. P. 641–650. https://doi.org/10.1016/S1872-2067(12)60531-2

12. Choi H.S., Meier D. // J. of Analytical and Applied Pyrolysis. 2013. V. 100. P. 207–212. https://doi.org/10.1016/j.jaap.2012.12.025

13. Lu Q., Li W.-Z., Zhu X.-F. // Energy Conversion and Management. 2009. V. 50. № 5. P. 1376–1383. https://doi.org/10.1016/j.enconman.2009.01.001

14. Mortensen P.M., Grunwaldt J.-D., Jensen P.A., Knudsen K.G., Jensen A.D. // Applied Catalysis A: General. 2011. V. 407. № 1–2. P. 1–19. https://doi.org/10.1016/j.apcata.2011.08.046

15. Wildschut J., Mahfud F.H., Venderbosch R.H., Heeres H.J. // Industrial & Engineering Chemistry Research. 2009. V. 48. № 23. P. 10324–10334. https://doi.org/10.1021/ie9006003

16. Ardiyanti A.R., Khromova S.A., Venderbosch R.H., Yakovlev V.A., Melián-Cabrera I.V., Heeres H.J. // Applied Catalysis A: General. 2012. V. 449. P. 121–130. https://doi.org/10.1016/j.apcata.2012.09.016

17. Corma A., Huber G.W., Sauvanaud L., O'Connor P. // J. of Catalysis. 2007. V. 247. № 2. P. 307–327. https://doi.org/10.1016/j.jcat.2007.01.023

18. Fogassy G., Thegarid N., Toussaint G., van Veen A.C., Schuurman Y., Mirodatos C. // Applied Catalysis B: Environmental. 2010. V. 96. № 3–4. P. 476–485. https://doi.org/10.1016/j.apcatb.2010.03.008

19. Bryden K., Weatherbee G., and Habib Jr. E.T. // 17th International zeolite conference – IZC 17. Moscow. Russia. July 7–12. 2013. Volume A. P. 30.

20. Graça I., Comparot J.-D., Laforge S., Magnoux P., Lopes J.M., Ribeiro M.F., Ribeiro F.R. // Applied Catalysis A: General. 2009. V. 353. № 1. P. 123–129. https://doi.org/10.1016/j.apcata.2008.10.032

21. Graça I., Fernandes A., Lopes J.M., Ribeiro M.F., Laforge S., Magnoux P., Ribeiro F.R. // Fuel. 2011. V. 90. № 2. P. 467–476. https://doi.org/10.1016/j.fuel.2010.09.028

22. Доронин В.П., Сорокина Т.П. // Российский химический журнал. 2007. Т. 51. № 4. С. 23–29. (Doronin V.P., Sorokina T.P. // Russian Journal of General Chemistry. 2007. V. 77. № 12. P. 2224–2231.)

23. Mostad H.B., Riis T.U., Ellestad O.H. // Applied Catalysis. 1990. V. 63. № 1. P. 345–364. https://doi.org/10.1016/S0166-9834(00)81724-8

24. Townsend A.T., Abbot J. // Applied Catalysis A: General. 1992. V. 90. № 2. P. 97–115. https://doi.org/10.1016/0926-860X(92)85051-C

25. Corma A., Bermúdez O., Martı́nez C., Ortega F.J. // Applied Catalysis A: General. 2002. V. 230. № 1–2. P. 111–125. https://doi.org/10.1016/S0926-860X(01)01000-6

26. Corma A., Marie O., Ortega F.J. // Journal of Catalysis. 2004. V. 222. № 2. P. 338–347. https://doi.org/10.1016/j.jcat.2003.11.006


Review

For citations:


Lipin P.V., Doronin V.P., Potapenko O.V., Sorokina T.P. Regularities in the Simultaneous Conversion of Phenol and Tetralin During Catalytic Cracking. Kataliz v promyshlennosti. 2022;22(5):53-60. (In Russ.) https://doi.org/10.18412/1816-0387-2022-5-53-60

Views: 221


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)