

A Single-Step Hydrolysis-Reduction of Potato Starch to Sorbite in the Presence of Bifunctional Catalyst Ru/Сs3HSiW12O40
https://doi.org/10.18412/1816-0387-2022-5-70-82
Abstract
It was shown that sorbite can be obtained from potato starch by its single-step hydrolysis-reduction in the presence of bifunctional catalysts 0.3–3 wt.%Ru/Cs3HSiW12O40 (Ru/Cs-HPA). Most efficient was the catalyst containing 1 wt.%Ru; this is related to the optimal concentration ratio of Broensted and Lewis acid sites on the support surface and a high specific surface area. The reaction kinetics in the presence of 1%Ru/Сs-HPA was studied and the apparent activation energy of the starch hydrolysis-reduction to sorbite (80±8 kJ/mol) was determined. The experimental and literature data were used to propose a kinetic model of the process, which describes quite adequately the hydrolysisreduction of starch. In the presence of the catalyst with the optimal composition (1%Ru/Cs-HPA) at the optimal temperature (150 °С), the yield of sorbite achieved 88 mol.% (99 wt.%) for 3 hours of the reaction.
About the Authors
N. V. GromovRussian Federation
T. B. Medvedeva
Russian Federation
V. N. Panchenko
Russian Federation
O. P. Taran
Russian Federation
M. N. Timofeeva
Russian Federation
V. N. Parmon
Russian Federation
References
1. Delgado-Arcaño Y., Mandelli D., Carvalho W.A. et al. // Waste and Biomass Valorization. 2021. Vol. 12, № 9. P. 5109–5120. DOI: 10.1007/s12649-021-01348-7.
2. Mäki-Arvela P., Holmbom B., Salmi T. et al. // Catal. Rev. 2007. Vol. 49, № 3. P. 197–340. DOI: 10.1080/01614940701313127.
3. Deng W., Wang Y., Zhang Q. et al. // Catalysis Surveys from Asia. 2012. Vol. 16, № 2. P. 91–105. DOI: 10.1007/s10563-012-9136-1.
4. Fukuoka A., Dhepe P.L. // Angewandte Chemie International Edition. 2006. Vol. 45, № 31. P. 5161–5163. DOI: https://doi.org/10.1002/anie.200601921.
5. Fukuoka A., Dhepe P.L. // The Chemical Record. 2009. Vol. 9, № 4. P. 224–235. DOI: https://doi.org/10.1002/tcr.200900004.
6. Gromov N.V., Medvedeva T.B., Taran O.P. et al. // Appl. Catal. A: Gen. 2020. Vol. 595. Article 117489. DOI: https://doi.org/10.1016/j.apcata.2020.117489.
7. Gromov N.V., Medvedeva T.B., Rodikova Y.A. et al. // Bioresour. Technol. 2021. Vol. 319. Article 124122. DOI: https://doi.org/10.1016/j.biortech.2020.124122.
8. Liu M., Deng W., Zhang Q. et al. // Chem. Commun. 2011. Vol. 47, № 34. P. 9717–9719. DOI: 10.1039/c1cc12506k.
9. Xie X., Han J., Wang H. et al. // Catal. Today. 2014. Vol. 233. P. 70–76. DOI: https://doi.org/10.1016/j.cattod.2013.09.061.
10. Колвин Д.Р. Структура и образование целлюлозных микрофибрилл // Целлюлоза и ее производные / пер. с англ. ; под ред. Н. Байклза, Л. Сегала. Т. 2. М. : Мир, 1974. С. 20–46.
11. Пат. 3963788A США, МПК CO7C 31/18. Polyhydric alcohol production using ruthenium zeolite catalyst / W.M. Kruse, L.W. Wright ; заявитель и патентообладатель W.M. Kruse, L.W. Wright. Опубл. 15.06.76.
12. Пат. 4694113 США, МПК C07C 29/132. Dual catalyst sequential method for production of sorbitol from hydrolyzed starch solution / G.J. Gauthier, J.D. Miceli ; заявитель и патентообладатель Pfizer Inc. Опубл. 15.09.87.
13. Пат. 2609398 США, МПК C07C 31/26. Process for hydrogenation of polysaccharides / J.H. Lolkema, A. van Westen ; заявитель и патентообладатель SCHOLTEN CHEMISCHE FAB. Опубл. 02.09.52.
14. Gromov N.V., Medvedeva T.B., Rodikova Y.A. et al. // RSC Advances. 2020. Vol. 10, № 48. P. 28856–28864. DOI: 10.1039/d0ra05501h.
15. Gromov N.V., Medvedeva T.B., Taran O.P. et al. // Catalysis in Industry. 2021. Vol. 13, № 1. P. 73–80. DOI: 10.1134/s2070050421010049.
16. Gromov N.V., Medvedeva T.B., Panchenko V.N. et al. // Catalysis in Industry. 2021. Vol. 13, № 1. P. 81–89. DOI: 10.1134/s2070050421010050.
17. Иконникова К.В. Теория и практика рН-метрического определения кислотно-основных свойств поверхности твердых тел : учеб. пособие / К.В. Иконникова, Л.Ф. Иконникова, Т.С. Минакова, Ю.С. Саркисов. Томск : Изд-во Томского политехнического университета, 2011. 85 с.
18. Паукштис Е. А., Инфракрасная спектроскопия в гетерогенном кислотном-основном катализе. Новосибирск : Наука, 1992. 254 с.
19. Raspolli Galletti A.M., Antonetti C., Fulignati S. et al. // Catalysts. 2020. Vol. 10, № 10. P. 1221. DOI: https://doi.org/10.3390/catal10101221
20. Luzgin M.V., Ka zantsev M.S., Volkova G.G. et al. // J. Catal. 2011. Vol. 277, № 1. P. 72–79. DOI: https://doi.org/10.1016/j.jcat.2010.10.015.
21. Luzgin M.V., Kazantsev M.S., Volkova G.G. et al. // J. Catal. 2013. Vol. 308. P. 250–257. DOI: https://doi.org/10.1016/j.jcat.2013.08.024.
22. Kim Y.T., Dumesic J.A., Huber G.W. // J. Catal. 2013. Vol. 304. P. 72–85. DOI: https://doi.org/10.1016/j.jcat.2013.03.022.
23. Deng W., Wang Y., Zhang Q. et al. // Catal. Surveys Asia. 2012. Vol. 16, № 2. P. 91–105. DOI: 10.1007/s10563-012-9136-1.
24. Negahdar L. Kinetic investigation of the hydrolytic hydrogenation of oligosaccharides to sorbitol : PhD dissertation. Aachen, Germany : RWTH Aachen University, 2015.
25. Komanoya T., Kobayashi H., Hara K. et al. // ChemCatChem. 2014. Vol. 6, № 1. P. 230-236. DOI: https://doi.org/10.1002/cctc.201300731.
26. Negahdar L., Oltmanns J.U., Palkovits S. et al. // Appl. Catal. B: Environ. 2014. Vol. 147. P. 677–683. DOI: https://doi.org/10.1016/j.apcatb.2013.09.046.
27. Математическое моделирование химико-технологических процессов : учеб. пособие / Н.В. Ушева, О.Е. Мойзес, О.Е. Митянина, Е.А. Кузьменко Томск : Изд-во Томского политехнического университета, 2014. 135 с.
Review
For citations:
Gromov N.V., Medvedeva T.B., Panchenko V.N., Taran O.P., Timofeeva M.N., Parmon V.N. A Single-Step Hydrolysis-Reduction of Potato Starch to Sorbite in the Presence of Bifunctional Catalyst Ru/Сs3HSiW12O40. Kataliz v promyshlennosti. 2022;22(5):70-82. (In Russ.) https://doi.org/10.18412/1816-0387-2022-5-70-82