Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Features of Deactivation and Regeneration of the Zeolite-Containing Cobalt Catalyst in a Fischer – Tropsch Synthesis Reactor

https://doi.org/10.18412/1816-0387-2022-6-16-29

Abstract

Endurance tests of the zeolite-containing cobalt catalyst for the Fischer – Tropsch synthesis were carried out in reactor tubes of the size comparable with those used in industrial reactors. During the tests (3000 h), the catalyst activity decreased by 13 %. Deactivation of the zeolite-containing cobalt catalyst was shown to occur due to agglomeration of cobalt clusters and formation of amorphous carbon on their surface. A method of decreasing the catalyst deactivation rate and two methods of the catalyst regeneration were proposed. The method of redox regeneration of zeolite-containing cobalt catalysts allows restoring 98 % of their initial activity.

About the Authors

A. S. Gorshkov
INFRA Ltd, Moscow
Russian Federation


L. V. Sineva
INFRA Ltd, Moscow; Technological Institute for Superhard and Novel Carbon Materials (TISNCM), Moscow
Russian Federation


K. O. Gryaznov
Technological Institute for Superhard and Novel Carbon Materials (TISNCM), Moscow
Russian Federation


E. Yu. Asalieva
INFRA Ltd, Moscow; Technological Institute for Superhard and Novel Carbon Materials (TISNCM), Moscow
Russian Federation


V. Z. Mordkovich
INFRA Ltd, Moscow; Technological Institute for Superhard and Novel Carbon Materials (TISNCM), Moscow
Russian Federation


References

1. Веб-сайт компании BP. URL:https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2020-full-report.pdf (дата обращения 11.01.2022)

2. Liu Z., Li X., Asami K., Fujimoto K.// Cat. Today. 2005. V. 104, Issue 1, P. 41-47.

3. Sineva L., Asalieva E., Mordkovich V.// Russ. Chem. Rev. 2015. V. 84 (11), P. 1176–1189. DOI: http://dx.doi.org/10.1070/RCR4464?locatt=label:RUSSIAN.

4. Sineva L., Gorokhova E., Gryaznov K., Ermolaev I., Mordkovich V.//Cat. Today.2021. V. 378, P. 140–148.

5. Duyckaerts N., Trotuş I., Swertz A., Schüth F., Prieto G. // ACS Catalysis. 2016. V. 6(7), P. 4229-4238. DOI: 10.1021/acscatal.6b00904.

6. Saib A., Moodley D., Ciobica I., Hauman M., Sigwebela B., Weststrate C., Niemantsverdriet J., van de Loosdrecht J. // Cat. Today. 2010. V. 154. P. 271–282. DOI: 10.1016/j.cattod.2010.02.008.

7. Savost’yanov A., Eliseev O., Yakovenko R., Narochniy G., Maslakov K., Zubkov I., Soromotin V., Kozakov A., Nicolskii A., Mitchenko S. // Catal. Letters. 2020. V. 150. P. 1932–1941. DOI: https://doi.org/10.1007/s10562-020-03097-z.

8. Moodley D. // Technische Universiteit Eindhoven. 2008. DOI: https://doi.org/10.6100/IR637807.

9. Moodley D., van de Loosdrecht J., Saib A., Overett M., Datye A., Niemantsverdriet J. // Applied Catalysis A: General. 2009. V. 354. P. 102–110. DOI: https://doi.org/10.1016/j.apcata.2008.11.015.

10. Gavrilovic L., Jørgensen E., Pandey U., Putta K., Rout K., Rytter E., Hillestad M., Blekkan E. // Cat. Today. 2020. V. 369. P. 150–157. DOI: 10.1016/j.cattod.2020.07.055.

11. Lancelot C., Ordomsky V., Stéphan O., Sadeqzadeh M., Karaca H., Lacroix M., Curulla-Ferré D., Luck F., Fongarland P., Griboval-Constant A., Khodakov. // ACS Catalysis. 2014. V. 4(12). P. 4510–4515. DOI: 10.1021/cs500981p.

12. Okoye-Chine C., Moyo M., Liu X., Hildebrandt D. // Fuel Processing Technology. 2019. V. 192. P. 105–129. DOI: 10.1016/j.fuproc.2019.04.006.

13. Saib A., Borgna A., van de Loosdrecht J. // Applied Catalysis A: General. 2006. V. 312. P. 12–19.

14. Wolf M., Fischer N., Claeys M. // Nature Catalysis. 2020. V. 3. P. 962–965. DOI: 10.1038/s41929-020-00534-5.

15. Iglesia E. // Applied Catalysis A: General. 1997. V. 161. P. 59–78. DOI: 10.1016/S0926-860X(97)00186-5.

16. Wolf M., Fischer N., Claeys M. // Journal of Catalysis. 2019. P. 199–207. DOI: 10.1016/j.jcat.2019.04.030.

17. Lin Q., Liu B., Jiang F., Fang X., Xu Y., Liu X. // Catal. Sci. Technol. 2019. V. 9.

18. Hazemann P., Decottignies D., Maury S., Humbert S., Meunier F., Schuurman Y. // Journal of Catalysis. 2021. V. 397. P.1–12. DOI: 10.1016/j.jcat.2021.03.005.

19. van Ravenhorst IK., Hoffman A., Vogt C., Boubnov A., Patra N., Oord R., Akatay C., Meirer F., Bare S., Weckhuysen B. // ACS Catal. 2021. V. 11. P. 2956−2967. DOI: 10.1021/acscatal.0c04695.

20. Bartholomew C. H., Rahmati M., Reynolds M. A. // Applied Catalysis A, General. 2020.

21. Carvalho A., Ordomsky V., Luo Y., Marinova M., Muniz A., Marcilio N., Khodakov A. // Journal of Catalysis. 2016. V. 344. P.669–679. DOI: 10.1016/j.jcat.2016.11.001.

22. Chernyak S., Burtsev A., Maksimov S., Kupreenko S., Maslakov K., Savilov S. // Applied Catalysis A, General.2020.

23. Moodley D., Claeys M., van Steen E., van Helden P., Kistamurthy D., Weststrate K., Niemantsverdriet H., Saib A., Erasmus W., van de Loosdrecht J. // Catal. Today. 2020. V. 342. P. 59–70. DOI: 10.1016/j.cattod.2019.03.059.

24. Tucker C., Claeys M., van Steen E. // Catal. Sci. Technol. 2020. V. 145 (7). DOI: 10.1039/x0xx00000x.

25. Wolf M., Gibson E., Olivier E., Neethling J., Richard C., Catlow A., Fischer N., Claeys M. // Cat. Today. 2020. V. 342. P. 71–78. DOI: 10.1016/j.cattod.2019.01.065.

26. Moodley D., van de Loosdrecht J., Saib A., Overett M., Datye A., Niemantsverdriet J. // Applied Catalysis A: General. 2009. V. 354. I. 1–2. P. 102–110. DOI: 10.1016/j.apcata.2008.11.015.

27. A. Pour, Taheri S., Anahid S., Hatami B., Tavasoli A. // Journal of Natural Gas Science and Engineering. 2014. V. 18. P. 104–111. DOI: 10.1016/j.jngse.2014.01.019.

28. Asalieva E., Sineva E., Sinichkina S., Solomonik I., Gryaznov K., Pushina E., Kulchakovskaya E., Gorshkov A., Kulnitskiy, Ovsyannikov D., Zholudev S., Mordkovich V. // Appl. Cat. A. 2020. V. 601. P. 117639. DOI: 10.1016/j.apcata.2020.117639.

29. Савостьянов А.П., Яковенко Р., Нарочный Г., Зубков И., Сулима С., Соромотин В., Митченко С. // Нефтехимия. 2020. Т. 60. № 1. С. 89–100. DOI: 10.31857/S0028242120010128.

30. Rößler S., Kern C., Jess A. // Catal. Sci. Technol. 2019. V. 9. P. 4047–4054. DOI: 10.1039/c9cy00671k.

31. Сторч Г., Голамбик Н., Андерсон Р. Синтез углеводородов из окиси углерода и водорода. М.: Иностранная литература. 1954. 516 с.

32. Arcuri, K., Leviness S. // Prepared for presentation at 2003 AIChE Spring National Meeting, New Orleans, LA. URL: http://www.fischer-tropsch.org/primary_documents/presentations/AIChE%202003%20Spring%20National%20Meeting/Paper%2086a%20Arcuri%20Regeneration.pdf (дата обращения 11.01.2022).

33. Rytter E., Holmen A. // Catalysts. 2015. V. 5. P. 478–499. DOI: 10.3390/catal5020478.

34. U.S. Patent 2012/0165417, 2011.

35. Zhou W., Chen J., Fang K., Sun Y.// Fuel Processing Technology. 2006. V. 87. P. 609–616.

36. Яковенко Р., Зубков И., Савостьянов А., Соромотин В., Краснякова Т., Папета О., Митченко С. // Кинетика и катализ. 2021. Т. 62. № 1. С. 109–119. DOI: 10.31857/S0453881121010159.

37. Патент РФ 2405625; опубл. 2010.

38. Патент РФ 2685437; опубл. 2010. Patent WO 2011053192 A2, 2012.

39. Ermolaev V., Gryaznov K., Mitberg E., Mordkovich V., Tretyakov V. // Chem. Eng. Sc. 2015. V. 138. P. 1–8.


Review

For citations:


Gorshkov A.S., Sineva L.V., Gryaznov K.O., Asalieva E.Yu., Mordkovich V.Z. Features of Deactivation and Regeneration of the Zeolite-Containing Cobalt Catalyst in a Fischer – Tropsch Synthesis Reactor. Kataliz v promyshlennosti. 2022;22(6):16-29. (In Russ.) https://doi.org/10.18412/1816-0387-2022-6-16-29

Views: 315


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)