

The Role of Interstitial Solid Solutions in the Formation of Active Component in Supported Palladium Catalysts for Selective Hydrogenation of Acetylene to Ethylene
https://doi.org/10.18412/1816-0387-2022-6-51-67
Abstract
The effect of adsorption of the reaction medium components on selective hydrogenation of acetylene to ethylene under the action of supported palladium catalysts is considered. The role of interstitial solid solutions of carbon and hydrogen in palladium, which are formed upon contact of the catalyst with the reaction medium, in the mass-transfer processes between surface and subsurface layer of the active component is revealed. The ratio of activation barriers for ethylene desorption/adsorption processes, which determines the selectivity of acetylene hydrogenation, can change in dependence on the structure of palladium nanoparticles and its electronic state. Therewith, changes in the electronic state affect the energy of activated desorption of ethylene from palladium particles, and their structural features determine the energy of activated adsorption and the subsequent hydrogenation of ethylene to ethane.
About the Authors
D. A. ShlyapinRussian Federation
D. V. Glyzdova
Russian Federation
T. N. Afonasenko
Russian Federation
V. L. Temerev
Russian Federation
A. V. Lavrenov
Russian Federation
References
1. Николаев С.А., Занавескин Л.Н., Смирнов В.В., Аверьянов В.А., Занавескин К.Л. // Успехи химии. 2009. Т. 78. №. 3. С. 248–265. https://doi.org/10.1070/RC2009v078n03ABEH003893
2. Эллерт О.Г., Цодиков М.В., Николаев С.А., Новоторцев В.М. // Успехи химии. 2014. Т. 83. № 8. С. 718–732. https://doi.org/10.1070/RC2014v083n08ABEH004432
3. Ravanchi M.T., Sahebdelfar S., Komeili S. // Rev. Chem. Eng. 2018. V. 34. №. 2. P. 215–237. https://doi.org/10.1515/revce-2016-0036
4. Mc Cue A.J., Anderson J.A. // Front. Chem. Sci. Eng. 2015. V. 9. №. 2. P. 142–153. https://doi.org/10.1007/s11705-015-1516-4
5. Liao F., Lo T.W.B., Tsang S.C.E. // Chem. Cat. Chem. 2015. V. 7. №. 14. P. 1998–2014. https://doi.org/10.1002/cctc.201500245
6. Osswald J., Kovnir K., Armbrüster M., Giedigkeit R., Jentoft R.E., Wild U., Grin Y. Schlögl R. // J. Catal. 2008. V. 258. №. 1. P. 219–227. https://doi.org/10.1016/j.jcat.2008.06.014
7. Osswald J., Giedigkeit R., Jentoft R.E., Armbrüster M., Girgsdies F., Kovnir K., Ressler T., Grin Y., Schlögl R. // J. Catal. 2008. V. 258. №. 1. P. 210–218. https://doi.org/10.1016/j.jcat.2008.06.013
8. Kovnir K., Armbrüster M., Teschner D., Venkov T.V., Szentmiklósi L., Jentoft F. C., Knop-Gericke A., Grin Yu., Schlögl R. // Surf. Sci. 2009. V. 603. №. 10-12. P. 1784–1792. https://doi.org/10.1016/j.susc.2008.09.058
9. Kumar N., Ghosh P. // Surf. Sci. 2016. V. 644. P. 69–79. https://doi.org/10.1016/j.susc.2015.09.005
10. Borodziński A., Bond G.C. // Catal. Rev. 2008. V. 50. № 3. P. 379–469. https://doi.org/10.1080/01614940802142102
11. Glyzdova D.V., Afonasenko T.N., Khramov E.V., Leont’eva N.N., Trenikhin M.V., Prosvirin I.P., Bukhtiyarov A.V. Shlyapin D.A. // Top. Catal. 2020. V. 63. №. 1. P. 139–151. https://doi.org/10.1007/s11244-019-01215-9
12. Al-Ammar A.S., Webb G. // J. Chem. Soc., Faraday Trans. 1. 1979. V. 75. P. 1900–1911. https://doi.org/10.1039/F19797501900
13. Borodziński A., Gołȩbiowski A. // Langmuir. 1997. V. 13. №. 5. P. 883–887. https://doi.org/10.1021/la951004y
14. Bos A.N.R., Westerterp K.R. // Chem. Eng. Process. 1993. V. 32. №. 1. P. 1–7. https://doi.org/10.1016/0255-2701(93)87001-B
15. Tysoe W.T., Nyberg G.L., Lambert R.M. // J. Phys. Chem. 1986. V. 90. №. 14. P. 3188–3192. https://doi.org/10.1021/j100405a028
16. Stuve E.M., Madix R.J. // J. Phys. Chem. 1985. V. 89. №. 1. P. 105–112. https://doi.org/10.1021/j100247a026
17. Leviness S., Nair V., Weiss A.H., Schay Z., Guczi L. // J. Mol. Catal. 1984. V. 25. Iss. 1-3. P. 131–140. https://doi.org/10.1016/0304-5102(84)80037-1
18. Gigola C.E., Aduriz H.R., Bodnariuk P. // Appl. Catal. 1986. V. 27. №. 1. P. 133–144. https://doi.org/10.1016/S0166-9834(00)81052-0
19. Sa J., Arteaga G.D., Daley R.A., Bernardi J., Anderson J.A. // J. Phys. Chem. B. 2006. V. 110. №. 34. P. 17090–17095. https://doi.org/10.1021/jp062205l
20. Crespo-Quesada M., Yoon S., Jin M., Prestianni A., Cortese R., Cardenas-Lizana F., Duca D., Weidenkaff A., Kiwi-Minsker L. // J. Phys. Chem. C. 2015. V. 119. Iss. 2. P. 1101–1107. https://doi.org/10.1021/jp510347r
21. Al-Ammar A.S., Webb G. // J. Chem. Soc., Faraday Trans. 1. 1978. V. 74. P. 195–205. https://doi.org/10.1039/F19787400195
22. Al-Ammar A.S., Webb G. // J. Chem. Soc., Faraday Trans. 1. 1978. V. 74. P. 657–664. https://doi.org/10.1039/F19787400657
23. D. Hartog A.J., Deng M., Jongerius F., Ponec V. // J. Mol. Cat. 1990. V. 60. №. 1. P. 99–108. https://doi.org/10.1016/0304-5102(90)85071-O
24. Guczi L., La Pierre R.B., Weiss A.H., Biron E. // J. Catal. 1979. V. 60. №. 1. P. 83–92. https://doi.org/10.1016/0021-9517(79)90070-8
25. Margitfalvi J., Guczi L., Weiss A.H. // J. Catal. 1981. V. 72. №. 2. P. 185–198. https://doi.org/10.1016/0021-9517(81)90001-4
26. Margitfalvi J., Guczi L., Weiss A.H. // React. Kinet. Catal. Lett. 1981. V. 15. №. 4. P. 475–479. https://doi.org/10.1007/BF02074152
27. Бальжинимаев Б.С., Паукштис Е.А., Ковалев Е.В. // Кат. в пром. 2019. Т. 19. № 5. С. 334–344. https://doi.org/10.1134/S207005042001002X
28. Horiuti I., Polanyi M. // T. Faraday Soc. 1934. V. 30. P. 1164–1172. https://doi.org/10.1039/TF9343001164
29. Sheth P.A., Neurock M., Smith C.M. // J. Phys. Chem. B. 2003. V. 107. Iss. 9. P. 2009–2017. https://doi.org/10.1021/jp021342p
30. Bond G.C., Wells P.B. // J. Catal. 1965. V. 4. Iss. 2. P. 211–219. https://doi.org/10.1016/0021-9517(65)90011-4
31. Bond G.C., Wells P.B. // J. Catal. 1966. V. 5. Iss. 1. P. 65–73. https://doi.org/10.1016/S0021-9517(66)80126-4
32. Bond G.C., Wells P.B. // J. Catal. 1966. V. 5. Iss. 3. P. 419–427. https://doi.org/10.1016/S0021-9517(66)80061-1
33. Arnett R.L., Crawford Jr. B.L. // J. Chem. Phys. 1950. V. 18. Iss. 1. P. 118–126. https://doi.org/10.1063/1.1747428
34. Molero H., Bartlett B.F., Tysoe W.T. // J. Catal. 1999. V. 181. №. 1. P. 49–56. https://doi.org/10.1006/jcat.1998.2294
35. Bond G. C. Catalysis by metals. – Academic Press, 1962.
36. Medlin J.W., Allendorf M.D. // J. Phys. Chem. B. 2003. V. 107. №. 1. P. 217–223. https://doi.org/10.1021/jp026555t
37. Basaran D., Aleksandrov H.A., Chen Z.X., Zhao Z.J., Rösch N. // J. Mol. Catal A Chem. 2011. V. 344. Iss. 1-2. P. 37–46. https://doi.org/10.1016/j.molcata.2011.04.019
38. Mittendorfer F., Thomazeau C., Raybaud P., Toulhoat H. // J. Phys. Chem. B. 2003. V. 107. №. 44. P. 12287–12295. https://doi.org/10.1021/jp035660f
39. Mei D., Sheth P.A., Neurock M., Smith C.M. // J. Catal. 2006. V. 242. Iss. 1. P. 1–15. https://doi.org/10.1016/j.jcat.2006.05.009
40. Gabasch H., Hayek K., Klötzer B., Knop-Gericke A., Schlögl R. // J. Phys. Chem. B. 2006. V. 110. №. 10. P. 4947–4952. https://doi.org/10.1021/jp056765g
41. Shaikhutdinov S., Heemeier M., Bäumer M., Lear T., Lennon D., Oldman R.J., Jackson S.D., Freund H.J. // J. Catal. 2001. V. 200. №. 2. P. 330–339. https://doi.org/10.1006/jcat.2001.3212
42. Moskaleva L.V., Chen Z.X., Aleksandrov H.A., Mohammed A.B., Sun Q., Rösch N. // J. Phys. Chem. C. 2009. V. 113. №. 6. P. 2512–2520. https://doi.org/10.1021/jp8082562
43. Huang F., Deng Y., Chen Y., Cai X., Peng M., Jia Z., Ren P., Xiao D., Wen X., Wang N., Liu H., Ma D. // J. Am. Chem. Soc. 2018. V. 140. №. 41. P. 13142–13146. https://doi.org/10.1021/jacs.8b07476
44. Dunphy J.C., Rose M., Behler S., Ogletree D.F., Salmeron M., Sautet P. // Phys. Rev. B. 1998. V. 57. №. 20. P. R12705. https://doi.org/10.1103/PhysRevB.57.R12705
45. Ryndin Y.A., Nosova L.V., Boronin A.I., Chuvilin, A.L. // Appl. Catal. 1988. V. 42. №. 1. P. 131–141. https://doi.org/10.1016/S0166-9834(00)80081-0
46. Ryndin Y.A., Stenin M.V., Boronin A.I., Bukhtiyarov V.I., Zaikovskii V.I. // Appl. Catal. 1989. V. 54. №. 1. P. 277–288. https://doi.org/10.1016/S0166-9834(00)82370-2
47. Kim S.K., Kim C., Lee J.H., Kim J., Lee H., Moon S.H. // J. Catal. 2013. V. 306. P. 146–154. https://doi.org/10.1016/j.jcat.2013.06.018
48. Chung J., Kim C., Jeong H., Yu T., Binh D.H., Jang J., Lee J., Kim B.M., Lim B. // Chem. Asian J. 2013. V. 8. № 5. P. 919–925. https://doi.org/10.1002/asia.201201166
49. Ярулин А.Э., Креспо-Кесада М.P., Егорова Е.В., Киви-Минскер Л.Л. // Кин. и кат. 2012. Т. 53. №. 2. С. 263–263. https://doi.org/10.1134/S0023158412020152
50. He Y.F., Feng J.T., Du Y.Y., Li D.Q. // ACS Catal. 2012. V. 2. №. 8. P. 1703–1710. https://doi.org/10.1021/cs300224j
51. Gulyaeva Y.K., Kaichev V.V., Zaikovskii V.I., Kovalyov E.V., Suknev A.P., Bal’zhinimaev B.S. // Catal. Today. 2015. V. 245. P. 139–146. https://doi.org/10.1016/j.cattod.2014.05.028
52. Glyzdova D.V., Khramov E.V., Smirnova N.S., Prosvirin I.P., Bukhtiyarov A.V., Trenikhin M.V., Gulyaeva T.I., Vedyagin A.A., Shlyapin D.A., Lavrenov A.V. // Appl. Surf. Sci. 2019. V. 483. P. 730–741. https://doi.org/10.1016/j.apsusc.2019.03.215
53. Glyzdova D.V., Afonasenko T.N., Khramov E.V., Leont’eva N.N., Trenikhin M.V., Kremneva A.M., Shlyapin D.A. // Mol. Catal. 2021. V. 511. P. 111717. https://doi.org/10.1016/j.mcat.2021.111717
54. Studt F., Abild‐Pedersen F., Bligaard T., Sørensen R.Z., Christensen C.H., Nørskov J.K. // Angew. Chem. 2008. V. 120. №. 48. P. 9439–9442. https://doi.org/10.1002/ange.200802844
55. Teschner D., Borsodi J., Wootsch A., Révay Z., Havecker M., Knop-Gericke A., Jackson S.D. Schlogl R. // Science. 2008. V. 320. Iss. 5872. P. 86–89. https://doi.org/10.1126/science.115520
56. Stacchiola D., Tysoe W.T. // Surf. Sci. 2003. V. 540. Iss. 2-3. P. L600–L604. https://doi.org/10.1016/S0039-6028(03)00848-3
57. Ludwig W., Savara A., Dostert K.H., Schauermann S. // J. Catal. 2011. V. 284. №. 2. P. 148–156. https://doi.org/10.1016/j.jcat.2011.10.010
58. Wood J., Alldrick M.J., Winterbottom J.M., Stitt E.H., Bailey S. // Catal. Today. 2007. V. 128. Iss. 1-2. P. 52–62. https://doi.org/10.1016/j.cattod.2007.04.016
59. Larsson M., Jansson J., Asplund S. // J. Catal. 1998. V. 178. Iss. 1. P. 49–57. https://doi.org/10.1006/jcat.1998.2128
60. Sárkány A., Horvath A., Beck A. // Appl. Catal. A: Gen. 2002. V. 229. №. 1-2. P. 117–125 https://doi.org/10.1016/S0926-860X(02)00020-0
61. Kozlov S.M., Yudanov I.V., Aleksandrov H.A., Rösch N. // Phys. Chem. Chem. Phys. 2009. V. 11. №. 46. P. 10955–10963. https://doi.org/10.1039/B916855A
62. Cao Y., Ge X., Li Y., Si R., Sui Z., Zhou J., Duan X., Zhou X. // Engineering. 2021. V. 7. №. 1. P. 103–110. https://doi.org/10.1016/j.eng.2020.06.023
63. Neyman K.M., Schauermann S. // Angew. Chem. Int. Edit. 2010. V. 49. №. 28. P. 4743–4746. https://doi.org/10.1002/anie.200904688
64. Benavidez A.D., Burton P.D., Nogales J.L., Jenkins A.R., Ivanov S.A., Miller J.T., Karim A.M., Datye A.K. // Appl. Catal. A: Gen. 2014. V. 482. P. 108–115. https://doi.org/10.1016/j.apcata.2014.05.027
65. Teschner D., Révay Z., Borsodi J., Hävecker M., Knop‐Gericke A., Schlögl R., Milroy D., Jackson D., Torres D., Sautet P. // Angew. Chem. 2008. V. 120. №. 48. P. 9414–9418. https://doi.org/10.1002/ange.200802134
66. Sautet P., Cinquini F. // Chem. Cat. Chem. 2010. V. 2. №. 6. P. 636–639. https://doi.org/10.1002/cctc.201000056
67. Yang B., Burch R., Hardacre C., Headdock G., Hu P. //J. Catal. 2013. V. 305. P. 264–276. https://doi.org/10.1016/j.jcat.2013.05.027
68. Yang B., Burch R., Hardacre C., Hu P., Hughes P. // J. Phys. Chem. C. 2014. V. 118. №. 7. P. 3664–3671 https://doi.org/10.1021/jp412255a
69. Yang B., Burch R., Hardacre C., Hu P., Hughes P. // Surf. Sci. 2016. V. 646. P. 45–49. https://doi.org/10.1016/j.susc.2015.07.015
70. Chen T., Foo C., Tsang S.C.E. // Chem. Sci. 2021. V. 12. №. 2. P. 517–532. https://doi.org/10.1039/D0SC06496C
71. Beck M., Ellner M., Mittemeijer E.J. // Acta Mater. 2001. V. 49. №. 6. P. 985-993. https://doi.org/10.1016/S1359-6454(00)00399-2
72. https://www.fxyz.ru/справочные_данные/свойства_атомов_веществ/радиусы_атомов_элементов/ (дата обращения 05.07.2022)
73. Ellis I.T., Wolf E.H., Jones G., Lo B., Li M.M. J., York A.P., Tsang S.C.E. // Chem. Commun. 2017. V. 53. Iss. 3. P. 601–604. https://doi.org/10.1039/C6CC08404D
Review
For citations:
Shlyapin D.A., Glyzdova D.V., Afonasenko T.N., Temerev V.L., Lavrenov A.V. The Role of Interstitial Solid Solutions in the Formation of Active Component in Supported Palladium Catalysts for Selective Hydrogenation of Acetylene to Ethylene. Kataliz v promyshlennosti. 2022;22(6):51-67. (In Russ.) https://doi.org/10.18412/1816-0387-2022-6-51-67