Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

The Role of Interstitial Solid Solutions in the Formation of Active Component in Supported Palladium Catalysts for Selective Hydrogenation of Acetylene to Ethylene

https://doi.org/10.18412/1816-0387-2022-6-51-67

Abstract

The effect of adsorption of the reaction medium components on selective hydrogenation of acetylene to ethylene under the action of supported palladium catalysts is considered. The role of interstitial solid solutions of carbon and hydrogen in palladium, which are formed upon contact of the catalyst with the reaction medium, in the mass-transfer processes between surface and subsurface layer of the active component is revealed. The ratio of activation barriers for ethylene desorption/adsorption processes, which determines the selectivity of acetylene hydrogenation, can change in dependence on the structure of palladium nanoparticles and its electronic state. Therewith, changes in the electronic state affect the energy of activated desorption of ethylene from palladium particles, and their structural features determine the energy of activated adsorption and the subsequent hydrogenation of ethylene to ethane.

About the Authors

D. A. Shlyapin
Center of New Chemical Technologies BIC SB RAS, Omsk
Russian Federation


D. V. Glyzdova
Center of New Chemical Technologies BIC SB RAS, Omsk
Russian Federation


T. N. Afonasenko
Center of New Chemical Technologies BIC SB RAS, Omsk
Russian Federation


V. L. Temerev
Center of New Chemical Technologies BIC SB RAS, Omsk
Russian Federation


A. V. Lavrenov
Center of New Chemical Technologies BIC SB RAS, Omsk
Russian Federation


References

1. Николаев С.А., Занавескин Л.Н., Смирнов В.В., Аверьянов В.А., Занавескин К.Л. // Успехи химии. 2009. Т. 78. №. 3. С. 248–265. https://doi.org/10.1070/RC2009v078n03ABEH003893

2. Эллерт О.Г., Цодиков М.В., Николаев С.А., Новоторцев В.М. // Успехи химии. 2014. Т. 83. № 8. С. 718–732. https://doi.org/10.1070/RC2014v083n08ABEH004432

3. Ravanchi M.T., Sahebdelfar S., Komeili S. // Rev. Chem. Eng. 2018. V. 34. №. 2. P. 215–237. https://doi.org/10.1515/revce-2016-0036

4. Mc Cue A.J., Anderson J.A. // Front. Chem. Sci. Eng. 2015. V. 9. №. 2. P. 142–153. https://doi.org/10.1007/s11705-015-1516-4

5. Liao F., Lo T.W.B., Tsang S.C.E. // Chem. Cat. Chem. 2015. V. 7. №. 14. P. 1998–2014. https://doi.org/10.1002/cctc.201500245

6. Osswald J., Kovnir K., Armbrüster M., Giedigkeit R., Jentoft R.E., Wild U., Grin Y. Schlögl R. // J. Catal. 2008. V. 258. №. 1. P. 219–227. https://doi.org/10.1016/j.jcat.2008.06.014

7. Osswald J., Giedigkeit R., Jentoft R.E., Armbrüster M., Girgsdies F., Kovnir K., Ressler T., Grin Y., Schlögl R. // J. Catal. 2008. V. 258. №. 1. P. 210–218. https://doi.org/10.1016/j.jcat.2008.06.013

8. Kovnir K., Armbrüster M., Teschner D., Venkov T.V., Szentmiklósi L., Jentoft F. C., Knop-Gericke A., Grin Yu., Schlögl R. // Surf. Sci. 2009. V. 603. №. 10-12. P. 1784–1792. https://doi.org/10.1016/j.susc.2008.09.058

9. Kumar N., Ghosh P. // Surf. Sci. 2016. V. 644. P. 69–79. https://doi.org/10.1016/j.susc.2015.09.005

10. Borodziński A., Bond G.C. // Catal. Rev. 2008. V. 50. № 3. P. 379–469. https://doi.org/10.1080/01614940802142102

11. Glyzdova D.V., Afonasenko T.N., Khramov E.V., Leont’eva N.N., Trenikhin M.V., Prosvirin I.P., Bukhtiyarov A.V. Shlyapin D.A. // Top. Catal. 2020. V. 63. №. 1. P. 139–151. https://doi.org/10.1007/s11244-019-01215-9

12. Al-Ammar A.S., Webb G. // J. Chem. Soc., Faraday Trans. 1. 1979. V. 75. P. 1900–1911. https://doi.org/10.1039/F19797501900

13. Borodziński A., Gołȩbiowski A. // Langmuir. 1997. V. 13. №. 5. P. 883–887. https://doi.org/10.1021/la951004y

14. Bos A.N.R., Westerterp K.R. // Chem. Eng. Process. 1993. V. 32. №. 1. P. 1–7. https://doi.org/10.1016/0255-2701(93)87001-B

15. Tysoe W.T., Nyberg G.L., Lambert R.M. // J. Phys. Chem. 1986. V. 90. №. 14. P. 3188–3192. https://doi.org/10.1021/j100405a028

16. Stuve E.M., Madix R.J. // J. Phys. Chem. 1985. V. 89. №. 1. P. 105–112. https://doi.org/10.1021/j100247a026

17. Leviness S., Nair V., Weiss A.H., Schay Z., Guczi L. // J. Mol. Catal. 1984. V. 25. Iss. 1-3. P. 131–140. https://doi.org/10.1016/0304-5102(84)80037-1

18. Gigola C.E., Aduriz H.R., Bodnariuk P. // Appl. Catal. 1986. V. 27. №. 1. P. 133–144. https://doi.org/10.1016/S0166-9834(00)81052-0

19. Sa J., Arteaga G.D., Daley R.A., Bernardi J., Anderson J.A. // J. Phys. Chem. B. 2006. V. 110. №. 34. P. 17090–17095. https://doi.org/10.1021/jp062205l

20. Crespo-Quesada M., Yoon S., Jin M., Prestianni A., Cortese R., Cardenas-Lizana F., Duca D., Weidenkaff A., Kiwi-Minsker L. // J. Phys. Chem. C. 2015. V. 119. Iss. 2. P. 1101–1107. https://doi.org/10.1021/jp510347r

21. Al-Ammar A.S., Webb G. // J. Chem. Soc., Faraday Trans. 1. 1978. V. 74. P. 195–205. https://doi.org/10.1039/F19787400195

22. Al-Ammar A.S., Webb G. // J. Chem. Soc., Faraday Trans. 1. 1978. V. 74. P. 657–664. https://doi.org/10.1039/F19787400657

23. D. Hartog A.J., Deng M., Jongerius F., Ponec V. // J. Mol. Cat. 1990. V. 60. №. 1. P. 99–108. https://doi.org/10.1016/0304-5102(90)85071-O

24. Guczi L., La Pierre R.B., Weiss A.H., Biron E. // J. Catal. 1979. V. 60. №. 1. P. 83–92. https://doi.org/10.1016/0021-9517(79)90070-8

25. Margitfalvi J., Guczi L., Weiss A.H. // J. Catal. 1981. V. 72. №. 2. P. 185–198. https://doi.org/10.1016/0021-9517(81)90001-4

26. Margitfalvi J., Guczi L., Weiss A.H. // React. Kinet. Catal. Lett. 1981. V. 15. №. 4. P. 475–479. https://doi.org/10.1007/BF02074152

27. Бальжинимаев Б.С., Паукштис Е.А., Ковалев Е.В. // Кат. в пром. 2019. Т. 19. № 5. С. 334–344. https://doi.org/10.1134/S207005042001002X

28. Horiuti I., Polanyi M. // T. Faraday Soc. 1934. V. 30. P. 1164–1172. https://doi.org/10.1039/TF9343001164

29. Sheth P.A., Neurock M., Smith C.M. // J. Phys. Chem. B. 2003. V. 107. Iss. 9. P. 2009–2017. https://doi.org/10.1021/jp021342p

30. Bond G.C., Wells P.B. // J. Catal. 1965. V. 4. Iss. 2. P. 211–219. https://doi.org/10.1016/0021-9517(65)90011-4

31. Bond G.C., Wells P.B. // J. Catal. 1966. V. 5. Iss. 1. P. 65–73. https://doi.org/10.1016/S0021-9517(66)80126-4

32. Bond G.C., Wells P.B. // J. Catal. 1966. V. 5. Iss. 3. P. 419–427. https://doi.org/10.1016/S0021-9517(66)80061-1

33. Arnett R.L., Crawford Jr. B.L. // J. Chem. Phys. 1950. V. 18. Iss. 1. P. 118–126. https://doi.org/10.1063/1.1747428

34. Molero H., Bartlett B.F., Tysoe W.T. // J. Catal. 1999. V. 181. №. 1. P. 49–56. https://doi.org/10.1006/jcat.1998.2294

35. Bond G. C. Catalysis by metals. – Academic Press, 1962.

36. Medlin J.W., Allendorf M.D. // J. Phys. Chem. B. 2003. V. 107. №. 1. P. 217–223. https://doi.org/10.1021/jp026555t

37. Basaran D., Aleksandrov H.A., Chen Z.X., Zhao Z.J., Rösch N. // J. Mol. Catal A Chem. 2011. V. 344. Iss. 1-2. P. 37–46. https://doi.org/10.1016/j.molcata.2011.04.019

38. Mittendorfer F., Thomazeau C., Raybaud P., Toulhoat H. // J. Phys. Chem. B. 2003. V. 107. №. 44. P. 12287–12295. https://doi.org/10.1021/jp035660f

39. Mei D., Sheth P.A., Neurock M., Smith C.M. // J. Catal. 2006. V. 242. Iss. 1. P. 1–15. https://doi.org/10.1016/j.jcat.2006.05.009

40. Gabasch H., Hayek K., Klötzer B., Knop-Gericke A., Schlögl R. // J. Phys. Chem. B. 2006. V. 110. №. 10. P. 4947–4952. https://doi.org/10.1021/jp056765g

41. Shaikhutdinov S., Heemeier M., Bäumer M., Lear T., Lennon D., Oldman R.J., Jackson S.D., Freund H.J. // J. Catal. 2001. V. 200. №. 2. P. 330–339. https://doi.org/10.1006/jcat.2001.3212

42. Moskaleva L.V., Chen Z.X., Aleksandrov H.A., Mohammed A.B., Sun Q., Rösch N. // J. Phys. Chem. C. 2009. V. 113. №. 6. P. 2512–2520. https://doi.org/10.1021/jp8082562

43. Huang F., Deng Y., Chen Y., Cai X., Peng M., Jia Z., Ren P., Xiao D., Wen X., Wang N., Liu H., Ma D. // J. Am. Chem. Soc. 2018. V. 140. №. 41. P. 13142–13146. https://doi.org/10.1021/jacs.8b07476

44. Dunphy J.C., Rose M., Behler S., Ogletree D.F., Salmeron M., Sautet P. // Phys. Rev. B. 1998. V. 57. №. 20. P. R12705. https://doi.org/10.1103/PhysRevB.57.R12705

45. Ryndin Y.A., Nosova L.V., Boronin A.I., Chuvilin, A.L. // Appl. Catal. 1988. V. 42. №. 1. P. 131–141. https://doi.org/10.1016/S0166-9834(00)80081-0

46. Ryndin Y.A., Stenin M.V., Boronin A.I., Bukhtiyarov V.I., Zaikovskii V.I. // Appl. Catal. 1989. V. 54. №. 1. P. 277–288. https://doi.org/10.1016/S0166-9834(00)82370-2

47. Kim S.K., Kim C., Lee J.H., Kim J., Lee H., Moon S.H. // J. Catal. 2013. V. 306. P. 146–154. https://doi.org/10.1016/j.jcat.2013.06.018

48. Chung J., Kim C., Jeong H., Yu T., Binh D.H., Jang J., Lee J., Kim B.M., Lim B. // Chem. Asian J. 2013. V. 8. № 5. P. 919–925. https://doi.org/10.1002/asia.201201166

49. Ярулин А.Э., Креспо-Кесада М.P., Егорова Е.В., Киви-Минскер Л.Л. // Кин. и кат. 2012. Т. 53. №. 2. С. 263–263. https://doi.org/10.1134/S0023158412020152

50. He Y.F., Feng J.T., Du Y.Y., Li D.Q. // ACS Catal. 2012. V. 2. №. 8. P. 1703–1710. https://doi.org/10.1021/cs300224j

51. Gulyaeva Y.K., Kaichev V.V., Zaikovskii V.I., Kovalyov E.V., Suknev A.P., Bal’zhinimaev B.S. // Catal. Today. 2015. V. 245. P. 139–146. https://doi.org/10.1016/j.cattod.2014.05.028

52. Glyzdova D.V., Khramov E.V., Smirnova N.S., Prosvirin I.P., Bukhtiyarov A.V., Trenikhin M.V., Gulyaeva T.I., Vedyagin A.A., Shlyapin D.A., Lavrenov A.V. // Appl. Surf. Sci. 2019. V. 483. P. 730–741. https://doi.org/10.1016/j.apsusc.2019.03.215

53. Glyzdova D.V., Afonasenko T.N., Khramov E.V., Leont’eva N.N., Trenikhin M.V., Kremneva A.M., Shlyapin D.A. // Mol. Catal. 2021. V. 511. P. 111717. https://doi.org/10.1016/j.mcat.2021.111717

54. Studt F., Abild‐Pedersen F., Bligaard T., Sørensen R.Z., Christensen C.H., Nørskov J.K. // Angew. Chem. 2008. V. 120. №. 48. P. 9439–9442. https://doi.org/10.1002/ange.200802844

55. Teschner D., Borsodi J., Wootsch A., Révay Z., Havecker M., Knop-Gericke A., Jackson S.D. Schlogl R. // Science. 2008. V. 320. Iss. 5872. P. 86–89. https://doi.org/10.1126/science.115520

56. Stacchiola D., Tysoe W.T. // Surf. Sci. 2003. V. 540. Iss. 2-3. P. L600–L604. https://doi.org/10.1016/S0039-6028(03)00848-3

57. Ludwig W., Savara A., Dostert K.H., Schauermann S. // J. Catal. 2011. V. 284. №. 2. P. 148–156. https://doi.org/10.1016/j.jcat.2011.10.010

58. Wood J., Alldrick M.J., Winterbottom J.M., Stitt E.H., Bailey S. // Catal. Today. 2007. V. 128. Iss. 1-2. P. 52–62. https://doi.org/10.1016/j.cattod.2007.04.016

59. Larsson M., Jansson J., Asplund S. // J. Catal. 1998. V. 178. Iss. 1. P. 49–57. https://doi.org/10.1006/jcat.1998.2128

60. Sárkány A., Horvath A., Beck A. // Appl. Catal. A: Gen. 2002. V. 229. №. 1-2. P. 117–125 https://doi.org/10.1016/S0926-860X(02)00020-0

61. Kozlov S.M., Yudanov I.V., Aleksandrov H.A., Rösch N. // Phys. Chem. Chem. Phys. 2009. V. 11. №. 46. P. 10955–10963. https://doi.org/10.1039/B916855A

62. Cao Y., Ge X., Li Y., Si R., Sui Z., Zhou J., Duan X., Zhou X. // Engineering. 2021. V. 7. №. 1. P. 103–110. https://doi.org/10.1016/j.eng.2020.06.023

63. Neyman K.M., Schauermann S. // Angew. Chem. Int. Edit. 2010. V. 49. №. 28. P. 4743–4746. https://doi.org/10.1002/anie.200904688

64. Benavidez A.D., Burton P.D., Nogales J.L., Jenkins A.R., Ivanov S.A., Miller J.T., Karim A.M., Datye A.K. // Appl. Catal. A: Gen. 2014. V. 482. P. 108–115. https://doi.org/10.1016/j.apcata.2014.05.027

65. Teschner D., Révay Z., Borsodi J., Hävecker M., Knop‐Gericke A., Schlögl R., Milroy D., Jackson D., Torres D., Sautet P. // Angew. Chem. 2008. V. 120. №. 48. P. 9414–9418. https://doi.org/10.1002/ange.200802134

66. Sautet P., Cinquini F. // Chem. Cat. Chem. 2010. V. 2. №. 6. P. 636–639. https://doi.org/10.1002/cctc.201000056

67. Yang B., Burch R., Hardacre C., Headdock G., Hu P. //J. Catal. 2013. V. 305. P. 264–276. https://doi.org/10.1016/j.jcat.2013.05.027

68. Yang B., Burch R., Hardacre C., Hu P., Hughes P. // J. Phys. Chem. C. 2014. V. 118. №. 7. P. 3664–3671 https://doi.org/10.1021/jp412255a

69. Yang B., Burch R., Hardacre C., Hu P., Hughes P. // Surf. Sci. 2016. V. 646. P. 45–49. https://doi.org/10.1016/j.susc.2015.07.015

70. Chen T., Foo C., Tsang S.C.E. // Chem. Sci. 2021. V. 12. №. 2. P. 517–532. https://doi.org/10.1039/D0SC06496C

71. Beck M., Ellner M., Mittemeijer E.J. // Acta Mater. 2001. V. 49. №. 6. P. 985-993. https://doi.org/10.1016/S1359-6454(00)00399-2

72. https://www.fxyz.ru/справочные_данные/свойства_атомов_веществ/радиусы_атомов_элементов/ (дата обращения 05.07.2022)

73. Ellis I.T., Wolf E.H., Jones G., Lo B., Li M.M. J., York A.P., Tsang S.C.E. // Chem. Commun. 2017. V. 53. Iss. 3. P. 601–604. https://doi.org/10.1039/C6CC08404D


Review

For citations:


Shlyapin D.A., Glyzdova D.V., Afonasenko T.N., Temerev V.L., Lavrenov A.V. The Role of Interstitial Solid Solutions in the Formation of Active Component in Supported Palladium Catalysts for Selective Hydrogenation of Acetylene to Ethylene. Kataliz v promyshlennosti. 2022;22(6):51-67. (In Russ.) https://doi.org/10.18412/1816-0387-2022-6-51-67

Views: 233


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)