

Spherical TiO2 /Cr2O3 Composites Synthesized Using Ion-Exchange Resins as a Template
https://doi.org/10.18412/1816-0387-2022-6-68-77
Abstract
Two samples of TiO2 /Cr2O3 composites were synthesized as spherical grains by stepwise thermal treatment of ion-exchange resins, which were preliminarily saturated with chromium cations Cr3+ and dichromate anions Cr2O7 2– and covered with a film-forming solution of titania. The modes of calcination were based on thermal analysis and determined by the type of ion-exchange resin chosen as a template. The obtained composites consist mostly of the α-Cr2O3 phase, while the content of the TiO2 phase does not exceed 4 %. The composites retain the spherical grain shape of the initial ion-exchange resins with the size from 370 to 660 μm. Grains of the sample based on cationite, which adsorbs Cr3+ ions, have a pore structure with swells and voids. Grains of the sample based on anionite have fractures and cracks over the entire surface due to nonuniform distribution of adsorbed Cr2O72– anions in the initial anionite. The composites exhibit the catalytic activity in the complete oxidation of p-xylene. The sample based on cationite is more active. This may be related to a smaller accessible specific surface area of titania in the anionite-based sample due to formation of the Ti3+ solid solution in α-Cr2O3.
About the Authors
A. A. BuzaevRussian Federation
A. O. Rogacheva
Russian Federation
T. V. Larina
Russian Federation
E. V. Dokuchits
Russian Federation
O. S. Khalipova
Russian Federation
V. V. Zharkova
Russian Federation
References
1. Алхазов Т.Г, Марголис Л.Я. Глубокое каталитическое окисление органических веществ. М.: Химия, 1985.
2. Крылов О.В. Гетерогенный катализ. М.: Академкнига, 2004.
3. СССР Патент SU1563015; опубл. 1998.
4. Porsin A.V., Kulikov A.V., Dalyuk I.K., Rogozhnikov V.N., Kochergin V.I. // Chem. Eng. J. 2015. V. 282. P. 233—240. https://doi.org/10.1016/j.cej.2015.02.028
5. Zauresh T., Zheksenbaeva S.A., Tungatarova T.S., Baizhumanova E.Sh. // Chem. Eng. Trans. 2015. V. 45. P. 1213—1218. https://doi.org/10.3303/CET1545203
6. Goodman E.D., Dai Sh., Yang An-Ch., Wrasman C.J., Gallo A., Bare S.R., Hoffman A.S., Jaramillo T.F., Graham G.W., Pan X., Cargnello M. // ACS Catal. 2017. V. 7. P. 4372—4380. https://doi.org/10.1021/acscatal.7b00393
7. Lokhande S., Doggali P., Rayalu S., Devotta S., Labhsetwar N. // Atmospheric Pollut. Res. 2015. V. 6. P. 589—595. https://doi.org/10.5094/APR.2015.066
8. Tidahy H.L., Siffert S., Wyrwalski F., Lamonier J.-F., Aboukais A. // Catal. Today 2007. V. 119. P. 317—320. https://doi.org/10.1016/j.cattod.2006.08.023
9. Barbato P.S., Colussi S., Benedetto A.D., Landi G., Lisi L., Llorca J., Trovarelli A. // J. Phys. Chem. C 2016. V. 120. P. 13039—13048. https://doi.org/10.1021/acs.jpcc.6b02433
10. Baidya T., Murayama T., Bera P., Safonova O.V., Steiger P., Katiyar N.K., Biswas K., Haruta M. // J. Phys. Chem. C 2017. V. 121. P. 15256—15265. https://doi.org/10.1021/acs.jpcc.7b04348
11. Albert J.J., Frank J., Mohit R., Aman A., Himanshu Sh., AnuragAnurag H., Wessley J.J. // Int. J. Sci. Eng. Technol. 2017. V. 5. № 2. P. 19—26.
12. Yim S.D., Nam I.-S. // J. Catal. 2004. V. 221. P. 601—611. https://doi.org/10.1016/j.jcat.2003.09.026
13. Yim S.D., Chang K.-H., Koh D.J., Nam I.-S., Kim Y.G. // Catal. Today 2000. V. 63. P. 215—222. https://doi.org/10.1016/S0920-5861(00)00462-4
14. Padilla A.M., Corella J., Toledo J.M. // Appl. Catal. B Environ. 1999. V. 22. P. 107—121. https://doi.org/10.1016/S0926-3373(99)00043-0
15. Yates J.G., Lettieri P. Fluidized-Bed Reactors: Processes and Operating Conditions, in J.M Valverde Millan (Eds.), Particle Technology Series, Springer. 2016. V. 26. Р. 205. https://doi.org/10.1007/978-3-319-39593-7
16. Campanati M., Fornasari G., Vaccari A. // Catal. Today 2003. V. 77. P. 299—314. https://doi.org10.1016/S0920-5861(02)00375-9
17. Islam A., Taufiq-Yap Y.H., Chu C.-M., Ravindra P., Chan E.-S. // Renew. Energ. 2013. V. 59. P. 23—29. https://doi.org/10.1016/j.renene.2013.01.051
18. Fajardo H.V., Probst L.F.D. // Appl. Catal. Gen. 2006. V. 306. P. 134—141. https://doi.org/10.1016/j.apcata.2006.03.043
19. Пимнева Л.А., Нестерова Е.Л. // Фундаментальные исследования. 2011. Т. 4. С. 150—153. http://www.fundamentalresearch.ru/ru/article/view?id=21246
20. Пимнева Л.А., Нестерова Е.Л. // Современные наукоемкие технологии. 2010. Т. 1. С. 21—26. http://www.top-technologies.ru/ru/article/view?id=24360
21. Rogacheva A., Shamsutdinova A., Brichkov A., Larina T., Paukshtis E., Kozik V. // AIP Conf. Proc. 2017. V. 1899. P. 020007. https://doi.org/10.1063/1.5009832
22. Zharkova V., Bobkova L., Brichkov A., Kozik V. // AIP Conf. Proc. 2017. V. 1899. P. 020011. https://doi.org/10.1063/1.5009836
23. РФ Патент № 2608125; опубл. 2017.
24. Rudometkina T.M., Ivanov V.M. // Bulletin of Moscow University. Chemistry 2013. V. 54. P. 164—167. http://www.chem.msu.su/rus/vmgu/133/abs003.html
25. Шварценбах Г. Комплексометрическое титрование. М.: Химия, 1970. 268 с.
26. Shamsutdinova A.N., Brichkov A.S., Paukshtis E.A., Larina T.V., Cherepanova S.V., Glazneva T.S., Kozik V.V. // Catal. Commun. 2017, V. 89. P. 64—68. https://doi.org/10.1016/j.catcom.2016.10.018
27. Дроздов А.А., Зломанов В.П., Мазо Г.Н., Спиридонов Ф.М., Третьяков Ю.Д. Неорганическая химия. М.: Академия, 2007.
28. Корчагин В.И. // Росс. жур. хим. и хим. технол. 2006. Т. 49. С. 59—63.
29. Пимнева Л.А. // Фундаментальные исследования. 2014. Т. 8. С. 614—619. http://www.fundamental-research.ru/ru/article/view?id=34603
30. Яковишин В.А., Савенков А.С. // Бюллетень НТУ ХПИ 2009. Т. 40. С. 59—64. http://repository.kpi.kharkov.ua/handle/KhPI-Press/32186
31. Zherebtsov D.A., Viktorov V.V., Kulikovskikh S.A., Belaya E.A., Galimov D.M. // Inorg. Mater. 2016. V. 52. P. 33—37. https://doi.org/10.1134/S0020168516010167
32. Shannon R.D. // Acta Crystallogr. A 1976. V. A32. P. 751—767. https://doi.org/10.1107/S0567739476001551
33. Nemykina E.I., Pakhomov N.A., Danilevich V.V., Rogov V.A., Zaikovskii V.I., Larina T.V., Molchanov V.V. // Kinet. Catal. 2010. V. 51. P. 898—906. https://doi.org/10.1134/S0023158410060169
Review
For citations:
Buzaev A.A., Rogacheva A.O., Larina T.V., Dokuchits E.V., Khalipova O.S., Zharkova V.V. Spherical TiO2 /Cr2O3 Composites Synthesized Using Ion-Exchange Resins as a Template. Kataliz v promyshlennosti. 2022;22(6):68-77. (In Russ.) https://doi.org/10.18412/1816-0387-2022-6-68-77