Preview

Катализ в промышленности

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Доступ платный или только для Подписчиков

Алкоксикарбонилирование ненасыщенных субстратов растительного происхождения с использованием палладиевых катализаторов как путь к получению сложноэфирных продуктов

https://doi.org/10.18412/1816-0387-2023-1-37-55

Аннотация

Синтез сложных эфиров алкоксикарбонилированием ненасыщенных субстратов растительного происхождения открывает возможность перехода на альтернативные сырьевые источники и позволяет решить целый ряд проблем, стоящих перед химической промышленностью: ресурсосбережения, минимизации отходов и повышения экологической безопасности и экономичности реализуемых процессов. Однако на данный момент в промышленности реализуется только производство метилметакрилата, включающее как одну из стадий метоксикар-бонилирование этилена. Цель данного обзора – систематизация и анализ литературных данных, опубликованных с 2010 г., в области синтеза сложных эфиров алкоксикарбонилированием субстратов растительного происхождения в мягких условиях. Было установлено, что за указанный период осуществлено алкоксикарбонилирование пентеновых и ундеценовых кислот, олеиновой, линолевой и эруковой кислот или их сложных эфиров и терпеновых соединений – цитронелловой кислоты и β-мирцена. Показано, что высокие выходы и селективности по продуктам линейного строения обеспечивались в мягких условиях главным образом применением гомогенных палладий-дифосфиновых катализаторов. Результаты этих работ открывают широкие перспективы реализации новых для промышленности процессов алкоксикарбонилирования субстратов растительного происхождения для получения актуальных химических продуктов, прежде всего полимеров.

Об авторах

Н. Т. Севостьянова
Тульский государственный педагогический университет им. Л.Н. Толстого
Россия


С. А. Баташев
Тульский государственный педагогический университет им. Л.Н. Толстого
Россия


Список литературы

1. Tullo A.H. // Chemical & Engineering News. 2009. V. 87. N 42. URL: https://cen.acs.org/articles/87/i42/New.html (дата обращения: 02.07.2022).

2. Лапидус А.Л., Пирожков С.Д. // Успехи химии. 1989. Т. 58. № 2. С. 197–233.

3. Kiss G. // Chemical Reviews. 2001. V. 101. N 11. P. 3435–3456. https://doi.org/10.1021/cr010328q

4. Brennführer A., Neumann H., Beller M. // ChemCatChem. 2009. V. 1. N 1. P. 28–41. https://doi.org/10.1002/cctc.200900062

5. Kalck P., Urrutigoïty M. // Inorganica Chimica Acta. 2015. V. 431. P. 110–121. https://doi.org/10.1016/j.ica.2015.02.007

6. Statistical Review of World Energy 2022 – all data, 1965-2021. URL: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/xlsx/energy-economics/statistical-review/bp-stats-review-2022-all-data.xlsx. сайт компании BP p.l.c. 2022 (дата обращения: 02.07.2022).

7. Feng S., Song X., Ren Z., Ding Y. // Industrial & Engineering Chemistry Research. 2019. V. 58. N 12. P 4755–4763. https://doi.org/10.1021/acs.iecr.8b05402

8. Ren Z., Lyu Y., Song X., Ding Y. // Applied Catalysis A: General. 2020. V. 595. 117488. https://doi.org/10.1016/j.apcata.2020.117488

9. De la Fuente V., Waugh M., Eastham G.R., Iggo J.A., Castillón S., Claver C. // Chemistry – A European Journal. 2010. V. 16. Iss. 23. P. 6919–6932. https://doi.org/10.1002/chem.200903158

10. Patent WO 1996/19434. 1996.

11. Pongrácz P., Bartal B., Kollár L., Mika L.T. // Journal of Organometallic Chemistry. 2017. V. 847. P. 140–145. https://doi.org/10.1016/j.jorganchem.2017.04.029

12. Ramarou D.S., Makhubela B.C.E., Smith G.S. // Journal of Organometallic Chemistry. 2018. V. 870. P. 23–31. https://doi.org/10.1016/j.jorganchem.2018.05.019

13. Drommi D., Arena C.G. // Catalysis Communications. 2018. V. 115. P. 36–39. https://doi.org/10.1016/j.catcom.2018.07.004

14. Bai S.-T., Sinha V., Kluwer A.M., Linnebank P.R., Abiri Z., Dydio P., Lutz M., de Bruin B., Reek J.N.H. // Chemical Science. 2019. V. 10. N 31. P. 7389–7398. https://doi.org/10.1039/C9SC02558H

15. Williams C., Ferreira M., Tilloy S., Monflier E., Mapolie S.F., Smith G.S. // Inorganica Chimica Acta. 2020. V. 502. https://doi.org/10.1016/j.ica.2019.119341

16. Mashabane T.L., Ramollo G.K., Kleinhans G., Doncker S.D., Siangwata S., Fernandes M.A., Lemmerer A., Smith G.S., Bezuidenhout D.I. // Journal of Organometallic Chemistry. 2020. V. 920. 121341. https://doi.org/10.1016/j.jorganchem.2020.121341

17. Siangwata S., Goosen N.J., Smith G.S. // Applied Catalysis A: General. 2020. V. 603. 117736. https://doi.org/10.1016/j.apcata.2020.117736

18. Yu S.-m., Snavely W.K., Chaudhari R.V., Subramaniam B. // Molecular Catalysis. 2020. V. 484. 110721. https://doi.org/10.1016/j.mcat.2019.110721

19. Zhao L., Pudasaini B., Genest A., Nobbs J.D., Low C.H., Stubbs L.P., van Meurs M., Rösch N. // ACS Catalysis. 2017. V. 7. N 10. P. 7070–7080. https://doi.org/10.1021/acscatal.7b02278

20. Li Y., Chaudhari R.V. // https://pubs.acs.org/action/showCitFormats?doi=10.1021%2Fie200676h&href=/doi/10.1021%2Fie200676hIndustrial & Engineering Chemistry Research. 2011. V. 50. N 16. P. 9577–9586. https://doi.org/10.1021/ie200676h

21. Cui L., Yang X., Zeng Y., Chen Y., Wang C. // Molecular Catalysis. 2019. V. 468. P. 57–61. https://doi.org/10.1016/j.mcat.2019.02.015

22. Rosales M., Pacheco I., Medira J., Fernandez J., Gonzalez A., Izquierto R. // Catalysis Letters. 2014. V. 144. N 10. P. 1717–1727. https://doi.org/10.1007/s10562-014-1335-0

23. Amézquita-Valencia M., Achonduh G., Alper H. // Journal of Organic Chemistry. 2015. V. 80. N 12. P. 6419–6424. https://doi.org/10.1021/acs.joc.5b00851

24. Li J., Ren W., Dai J., Shi Y. // Organic Chemistry Frontiers. 2018. V. 5. N 1. P. 75–79. https://doi.org/10.1039/C7QO00622E

25. Pongrácz P., Abu Seni A., Mika L.T., Kollár L. // Molecular Catalysis. 2017. V. 438. P. 15–18. https://doi.org/10.1016/j.mcat.2017.05.010

26. Schmidt M., Pogrzeba T., Hohl L., Weber A., Kielholz A., Kraume M., Schomäcker R. // Molecular Catalysis. 2018. V. 439. P. 1-8. https://doi.org/10.1016/j.mcat.2017.06.014

27. Li B., Lee S., Shin K., Chang S. // Organic Letters. 2014. V. 16. N 7. P. 2010–2013. https://doi.org/10.1021/ol500579n

28. Wu L., Liu Q., Jackstell R., Beller M. // Organic Chemistry Frontiers. 2015. V. 2. N 7. P. 771–774. https://doi.org/10.1039/C5QO00071H

29. Queirolo M., Vezzani A., Mancuso R., Gabriele B., Costa M., Ca’ N.D. // Journal of Molecular Catalysis A: Chemical. 2015. V. 398. P. 115–126. https://doi.org/10.1016/j.molcata.2014.11.028

30. Nifant’ev I.E., Sevostyanova N.T., Batashev S.A., Vinogradov A.A., Vinogradov A.A., Churakov A.V., Ivchenko P.V. // Applied Catalysis A: General. 2019. V. 581. P. 123–132. https://doi.org/10.1016/j.apcata.2019.05.030

31. Sevostyanova N., Batashev S. // Reaction Kinetics, Mechanisms and Catalysis. 2017. V. 122. N 1. P. 315–331. https://doi.org/10.1007/s11144-017-1238-3

32. Севостьянова Н.Т., Баташев С.А. // Химическая физика. 2018. Т. 37. № 6. С. 94–96. https://doi.org/10.7868/S0207401X18060122

33. Marinkovic J.B., Benders S., Garcia-Suarez E.J., Weiß A., Gundlach C., Haumann M., Küppers M., Blümich B., Fehrmann R., Riisager A. // RSC Advances. 2020. V. 10. N 31. P. 18487–18495. https://doi.org/10.1039/C9RA09515B

34. Logemann M., Marinkovic J.M., Schörner M., García-Suárez E.J., Hecht C., Franke R., Wessling M., Riisager A., Fehrmann R., Haumann M. // Green Chemistry. 2020. V. 22. N 17. P. 5691–5700. https://doi.org/10.1039/D0GC01483D

35. Wang Y., Yan L., Li C., Jiang M., Wang W., Ding Y. // Applied Catalysis A: General. 2020. V. 551. P. 98–105. https://doi.org/10.1016/j.apcata.2017.12.013

36. Wang Z., Yang Y. // RSC Advances. 2020. V. 10. N 49. P. 29263–29267. https://doi.org/10.1039/d0ra04816j

37. Sharma D., Ganesh V., Sakthivel A. // Applied Catalysis A: General. 2018. V. 555. P. 155–160. https://doi.org/10.1016/j.apcata.2018.02.019

38. Paganelli S., Tassini R., Rathod V.D., Onida B., Fiorilli S., Piccolo O. // Catalysis Letters. 2021. V. 151. N 5. P. 1508–1521. https://doi.org/10.1007/s10562-020-03407-5

39. Bhagade S.S., Chaurasia S.R., Bhanage B.M. // Catalysis Today. 2018. V. 309. P. 147–152. https://doi.org/10.1016/j.cattod.2017.08.022

40. Chada J.P., Xu Z., Zhao D., Watson R.B., Brammer M., Bigi M., Rosenfeld D.C., Hermans I., Huber G.W. // Catalysis Communications. 2018. V. 114. P. 93–97. https://doi.org/10.1016/j.catcom.2018.06.021

41. Biermann U., Bornscheuer U., Meier M.A.R., Metzger J.O., Schäfer H.J. // Angewandte Chemie International Edition. 2011. V. 50. N 17 P. 3854−3871. https://doi.org/10.1002/anie.201002767

42. Lestari S., Mäki-Arvela P., Beltramini J., Max Lu G.Q., Murzin D.Y. // ChemSusChem. 2009. V. 2. N 12. P. 1109–1119. https://doi.org/10.1002/cssc.200900107

43. Gunstone F.D. // Lipid Technology. 2008. V. 20. N 11. P. 264. https://doi.org/10.1002/lite.200800070

44. Stempfle F., Roesle P., Mecking S. // Biobased Monomers, Polymers, and Materials: ACS Symposium Series. Washington, 2012. V. 1105. P. 151−164. https://doi.org/10.1021/bk-2012-1105.ch010

45. Behr A., Seidensticker T., Vorholt A.J. // European Journal of Lipid Science and Technology. 2014. V. 116. N 4. P. 477–485. https://doi.org/10.1002/ejlt.201300224

46. Chikkali S., Stempfle F., Mecking S. // Macromolecular Rapid Communications. 2012. V. 33. N 13. P. 1126–1129. https://doi.org/10.1002/marc.201200226

47. Vieira C.G., dos Santos E.N., Gusevskaya E.V. // Applied Catalysis A: General. 2013. V. 466. P. 208–215. https://doi.org/10.1016/j.apcata.2013.06.037

48. Yuki Y., Takahashi K., Tanaka Y., Nozaki K. // Journal of American Chemical Society. 2013. V. 135. N 46. P. 17393–17400. https://doi.org/10.1021/ja407523j

49. Stempfle F., Quinzler D., Heckler I., Mecking S. // Macromolecules. 2011. V. 44. N 11. P. 4159−4166. https://doi.org/10.1021/ma200627e

50. Goldbach V., Roesle P., Mecking S. // ACS Catalysis. 2015. V. 5. N 10. P. 5951−5972. https://doi.org/10.1021/acscatal.5b01508

51. Stempfle F., Ortmann P., Mecking S. // Chemical Reviews. 2016. V. 116. N 7. P. 4597−4641. https://doi.org/10.1021/acs.chemrev.5b00705

52. Seidensticker T., Vorholt A.J., Behr A. // European Journal of Lipid Science and Technology. 2016. V. 118. N 1. P. 3−25. https://doi.org/10.1002/ejlt.201500190

53. de Vries J.G. // Chemical Record. 2016. V. 16. N 6. P. 2787−2800. https://doi.org/10.1002/tcr.201600102

54. Patent WO 2012/131027 A1. 2012.

55. Patent WO 2012/131028 A1. 2012.

56. Nifant’ev I., Bagrov V., Vinogradov A., Vinogradov A., Ilyin S., Sevostyanova N., Batashev S., Ivchenko P.V. // Lubricants. 2020. V. 8. N 5. P. 50–59. https://doi.org/10.3390/lubricants8050050

57. Vavasori A., Toniolo L., Cavinato G. // Journal of Molecular Catalysis A: Chemical. 2003. V. 191. Iss. 1. P. 9–21. https://doi.org/10.1016/S1381-1169(02)00358-8

58. Vavasori A., Cavinato G., Toniolo L. // Journal of Molecular Catalysis A: Chemical. 2001. V. 176. Iss. 1–2. P. 11-18. https://doi.org/10.1016/S1381-1169(01)00235-7

59. Amadio E., Cavinato G., Härter P., Toniolo L. // Journal of Organometallic Chemistry. 2013. V. 745-746. P. 115–119. http://doi.org/10.1016/j.jorganchem.2013.07.043

60. Cavinato G., Toniolo L., Vavasori A. // Journal of Molecular Catalysis A: Chemical. 2004. V. 219. Iss. 2. P. 233–240. https://doi.org/10.1016/j.molcata.2004.04.014

61. Петров Э.С. // Журнал физической химии. 1988. Т. 62. № 10. С. 2858–2868.

62. Аверьянов В.А., Севостьянова Н.Т., Баташев С.А., Демерлий А.М. // Нефтехимия. 2013. Т. 53. № 1. С. 43–49. https://doi.org/10.7868/S0028242113010024

63. Goldbach V., Falivene L., Caporaso L., Cavallo L., Mecking S. // ACS Catalysis. 2016. V. 6. Iss. 12. P. 8229−8238. https://doi.org/10.1021/acscatal.6b02622

64. Hess S.K., Schunck N.S., Goldbach V., Ewe D., Kroth P.G., Mecking S. // Journal of American Chemical Society. 2017. N 139. P. 13487−13491. https://doi.org/10.1021/jacs.7b06957

65. Лебедев Н.Н., Манаков М.Н., Швец В.Ф. Теория химических процессов основного органического и нефтехимического синтеза. М.: Химия, 1984. 376 c.

66. Суербаев Х.А., Кудайбергенов Н.Ж., Вавасори А. // Журнал общей химии. 2017. Т. 87. № 4. С. 574–579.

67. Patent WO 2013/107904 A1. 2013.

68. Goldbach V., Krumova M., Mecking S. // ACS Catalysis. 2018. V. 8. N 6. P. 5515–5525. http://doi.org/10.1021/acscatal.8b00981

69. Oppenheim J.P., Dickerson G.L. (updated by staff 2014). Adipic Acid. Kirk-Othmer Encyclopedia of Chemical Technology, New York: Wiley, 1991-2022. P. 1–27. https://doi.org/10.1002/0471238961.0104091604012209.a01.pub3

70. Furst M.R.L., Seidensticker T., Cole-Hamilton D.J. // Green Chemistry. 2013. V. 15. N 5. P. 1218−1225. https://doi.org/10.1039/C3GC37071B

71. Gaide T., Behr A., Arns A., Benski F., Vorholt A.J. // Chemical Engineering and Processing. 2016. V. 99. P. 197−204. https://doi.org/10.1016/j.cep.2015.07.009

72. Lemberg M., Sadowski G. // Journal of Chemical and Engineering Data. 2016. V. 61. N 9. P. 3317–3325. https://doi.org/10.1021/acs.jced.6b00360

73. Dong K., Sang R., Wei Z., Liu J., Dühren R., Spannenberg A., Jiao H., Neumann H., Jackstell R., Franke R., Beller M. // Chemical Science. 2018. V. 9. N 9. P. 2510–2516. https://doi.org/10.1039/C7SC02964K

74. Blanco C., Godard C., Zangrando E., Ruiz A., Claver C. // Dalton Transactions. 2012. V. 41. N 23. P. 6980–6991. https://doi.org/10.1039/C2DT30267E

75. Stempfle F., Ritter B.S., Mülhaupt R., Mecking S. // Green Chemistry. 2014. V. 16. N 4. P. 2008−2014. https://doi.org/10.1039/C4GC00114A

76. Witt T., Stempfle F., Roesle P., Häußler M., Mecking S. // ACS Catalysis. 2015. V. 5. N 8. P. 4519−4529. https://doi.org/10.1021/acscatal.5b00825

77. Liu Y., Mecking S. // Angewandte Chemie International Edition. 2019. V. 58. N 11. P. 3346−3350. https://doi.org/10.1002/anie.201981161

78. Химический энциклопедический словарь / Гл. ред. И.Л. Кнунянц. М.: Сов. Энциклопедия, 1983. 792 с.

79. Quinzler D., Mecking S. // Angewandte Chemie. 2010. V. 122. N 25. P. 4402–4404. https://doi.org/10.1002/ange.201001510

80. Cole-Hamilton D.J. // Angewandte Chemie International Edition. 2010. V. 49. N 46. P. 8564–8566. https://doi.org/10.1002/anie.201002593

81. Christl J.T., Roesle P., Stempfle F., Wucher P., Göttker-Schnetmann I., Müller G., Mecking S. // Chemistry – A European Journal. 2013. V. 19. N 50. P. 17131−17140. https://doi.org/10.1002/chem.201301124

82. Behr A., Vorholt A.J., Rentmeister N. // Chemical Engineering Science. 2013. V. 99. P. 38−43. https://doi.org/10.1016/j.ces.2013.05.040

83. Herrmann N., Köhnke K., Seidensticker T. // ACS Sustainable Chemical Engineering. 2020. V. 8. N 29. P. 10633–10638. https://doi.org/10.1021/acssuschemeng.0c03432

84. Furst M.R.L., Goff R.L., Quinzler D., Mecking S., Botting C.H., Cole-Hamilton D.J. // Green Chemistry. 2012. V. 14. N 2. P. 472–477. http://doi.org/10.1039/C1GC16094J

85. Walther G., Knöpke L.R., Rabeah J., Chęcińnski M.P., Jiao H., Bentrup U., Brückner A., Martin A., Köckritz A. // Journal of Catalysis. 2013. V. 297. P. 44–55. http://doi.org/10.1016/j.jcat.2012.09.016

86. Walther G. // ChemSusChem. 2014. V. 7. N 8. 2081–2088. http://doi.org/10.1002/cssc.201402379

87. Walther G., Deutsch J., Martin A., Baumann F.-E., Fridag D., Franke R., Köckritz A. // ChemSusChem. 2011. V. 4. N 8. P. 1052–1054. http://doi.org/10.1002/cssc.201100187

88. Roesle P., Dürr C.J., Möller H.M., Cavallo L., Caporaso L., Mecking S.J. // Journal of American Chemical Society. 2012. V. 134. N 42. P. 17696–17703. http://doi.org/10.1021/ja307411p

89. Roesle P., Caporaso L., Schnitte M., Goldbach V., Cavallo L., Mecking S.J. // Journal of American Chemical Society. 2014. V. 136. N 48. P. 16871–16881. http://doi.org/10.1021/ja508447d

90. Nobbs J.D., Low C.H., Stubbs L.P., Wang C., Drent E., van Meurs M. // Organometallics. 2017. V. 36. N 2. P. 391–398. http://doi.org/10.1021/acs.organomet.6b00813

91. Liu J., Dong K., Franke R., Neumann H., Jackstell R., Beller M. // Chemical Communications. 2018. V. 54. N 86. P. 12238–12241. https://doi.org/10.1039/C8CC07470D

92. Nifant’ev I., Sevostyanova N., Batashev S., Vorobiev A., Tavtorkin A., Krut’ko D. // Reaction Kinetics, Mechanisms and Catalysis. 2016. V. 119. N 1. P. 75–91. https://doi.org/10.1007/s11144-016-1048-z

93. Севостьянова Н.Т., Баташев С.А., Родионова А.С. // Химическая физика. 2019. Т. 38. № 4. С. 3–11. https://doi.org/10.1134/S0207401X19030075

94. Sang R., Kucmierczyk P., Dong K., Franke R., Neumann H., Jackstell R., Beller M. // Journal of American Chemical Society. 2018. V. 140. Iss. 15. P. 5217–5223. https://doi.org/10.1021/jacs.8b01123

95. Kim D.-S., Park W.-J., Lee C.-H., Jun C.-H. // Journal of Organic Chemistry. 2014. V. 79. Iss. 24. P. 12191-12196. https://doi.org/10.1021/jo501828j

96. Pingen D., Klinkenberg N., Mecking S. // ACS Sustainable Chemistry & Engineering. 2018. V. 6. N 9. P. 11219–11221. https://doi.org/10.1021/acssuschemeng.8b02939

97. Garcia-Suarez E.J., Paolicchi D., Li H., He J., Yang S., Riisager A., Saravanamurugan S. // Applied Catalysis A: General. 2019. V. 569. P. 170–174. https://doi.org/10.1016/j.apcata.2018.10.031

98. Roesle P., Stempfle F., Hess S.K., Zimmerer J., Río Bártulos C., Lepetit B., Eckert A., Kroth P.G., Mecking S. // Angewandte Chemie International Edition. 2014. V. 53. N 26. P. 6800–6804. https://doi.org/10.1002/anie.201403991

99. Kalck P., Urrutigoïty M., Dechy-Cabaret O. // Topics in Organometallic Chemistry. 2006. V. 18. P. 97–123. https://doi.org/10.1007/3418_018

100. Chenal T., Cipres I., Jenk J., Kalck Ph., Perez Y. // Journal of Molecular Catalysis. 1993. V. 78. Iss. 3. P. 351–366. https://doi.org/10.1016/0304-5102(93)87064-F

101. Da Rocha L.L., Dias A.O., Dos Santos E.N., Augusti R., Gusevskaya E. // Journal of Molecular Catalysis A: Chemical. 1998. V. 132. Iss. 2–3. P. 213–221. https://doi.org/10.1016/S1381-1169(97)00248-3

102. Lenoble G., Urrutigoïty M., Kalck Ph. // Tetrahedron Letters. 2001. V. 42. Iss. 22. P. 3697–3700. https://doi.org/10.1016/S0040-4039(01)00548-2

103. Lenoble G., Urrutigoïty M., Kalck Ph. // Journal of Organometallic Chemistry. 2002. V. 643–644. P. 12–18. https://doi.org/10.1016/S0022-328X(01)01245-1

104. Nguyen D.H., Hebrard F., Duran J., Polo A., Urrutigoïty M., Kalck Ph. // Applied Organometallic Chemistry. V. 19. Iss. 1. P. 30–34. https://doi.org/10.1002/aoc.727

105. El Ali B., Alper H. // Synlett. 2000. V. 2. P. 161–171. https://doi.org/10.1055/s-2000-6477

106. Busch H., Stempfle F., Hess S., Grau E., Mecking S. // Green Chemistry. 2014. V. 16. N 10. P. 4541–4545. https://doi.org/10.1039/C4GC01233J

107. Behr L.J., Wintzer A., Willstumpf A, Dinges M. // Catalysis Science & Technology. 2013. V. 3. N 6. P. 1573–1578. https://doi.org/10.1039/C3CY20734J


Рецензия

Для цитирования:


Севостьянова Н.Т., Баташев С.А. Алкоксикарбонилирование ненасыщенных субстратов растительного происхождения с использованием палладиевых катализаторов как путь к получению сложноэфирных продуктов. Катализ в промышленности. 2023;23(1):37-55. https://doi.org/10.18412/1816-0387-2023-1-37-55

For citation:


Sevostyanova N.T., Batashev S.A. Alkoxycarbonylation of Unsaturated Phytogenic Substrates Using Palladium Catalysts as a Way for Obtaining Ester Products. Kataliz v promyshlennosti. 2023;23(1):37-55. (In Russ.) https://doi.org/10.18412/1816-0387-2023-1-37-55

Просмотров: 291


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)