

Алкоксикарбонилирование ненасыщенных субстратов растительного происхождения с использованием палладиевых катализаторов как путь к получению сложноэфирных продуктов
https://doi.org/10.18412/1816-0387-2023-1-37-55
Аннотация
Синтез сложных эфиров алкоксикарбонилированием ненасыщенных субстратов растительного происхождения открывает возможность перехода на альтернативные сырьевые источники и позволяет решить целый ряд проблем, стоящих перед химической промышленностью: ресурсосбережения, минимизации отходов и повышения экологической безопасности и экономичности реализуемых процессов. Однако на данный момент в промышленности реализуется только производство метилметакрилата, включающее как одну из стадий метоксикар-бонилирование этилена. Цель данного обзора – систематизация и анализ литературных данных, опубликованных с 2010 г., в области синтеза сложных эфиров алкоксикарбонилированием субстратов растительного происхождения в мягких условиях. Было установлено, что за указанный период осуществлено алкоксикарбонилирование пентеновых и ундеценовых кислот, олеиновой, линолевой и эруковой кислот или их сложных эфиров и терпеновых соединений – цитронелловой кислоты и β-мирцена. Показано, что высокие выходы и селективности по продуктам линейного строения обеспечивались в мягких условиях главным образом применением гомогенных палладий-дифосфиновых катализаторов. Результаты этих работ открывают широкие перспективы реализации новых для промышленности процессов алкоксикарбонилирования субстратов растительного происхождения для получения актуальных химических продуктов, прежде всего полимеров.
Об авторах
Н. Т. СевостьяноваРоссия
С. А. Баташев
Россия
Список литературы
1. Tullo A.H. // Chemical & Engineering News. 2009. V. 87. N 42. URL: https://cen.acs.org/articles/87/i42/New.html (дата обращения: 02.07.2022).
2. Лапидус А.Л., Пирожков С.Д. // Успехи химии. 1989. Т. 58. № 2. С. 197–233.
3. Kiss G. // Chemical Reviews. 2001. V. 101. N 11. P. 3435–3456. https://doi.org/10.1021/cr010328q
4. Brennführer A., Neumann H., Beller M. // ChemCatChem. 2009. V. 1. N 1. P. 28–41. https://doi.org/10.1002/cctc.200900062
5. Kalck P., Urrutigoïty M. // Inorganica Chimica Acta. 2015. V. 431. P. 110–121. https://doi.org/10.1016/j.ica.2015.02.007
6. Statistical Review of World Energy 2022 – all data, 1965-2021. URL: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/xlsx/energy-economics/statistical-review/bp-stats-review-2022-all-data.xlsx. сайт компании BP p.l.c. 2022 (дата обращения: 02.07.2022).
7. Feng S., Song X., Ren Z., Ding Y. // Industrial & Engineering Chemistry Research. 2019. V. 58. N 12. P 4755–4763. https://doi.org/10.1021/acs.iecr.8b05402
8. Ren Z., Lyu Y., Song X., Ding Y. // Applied Catalysis A: General. 2020. V. 595. 117488. https://doi.org/10.1016/j.apcata.2020.117488
9. De la Fuente V., Waugh M., Eastham G.R., Iggo J.A., Castillón S., Claver C. // Chemistry – A European Journal. 2010. V. 16. Iss. 23. P. 6919–6932. https://doi.org/10.1002/chem.200903158
10. Patent WO 1996/19434. 1996.
11. Pongrácz P., Bartal B., Kollár L., Mika L.T. // Journal of Organometallic Chemistry. 2017. V. 847. P. 140–145. https://doi.org/10.1016/j.jorganchem.2017.04.029
12. Ramarou D.S., Makhubela B.C.E., Smith G.S. // Journal of Organometallic Chemistry. 2018. V. 870. P. 23–31. https://doi.org/10.1016/j.jorganchem.2018.05.019
13. Drommi D., Arena C.G. // Catalysis Communications. 2018. V. 115. P. 36–39. https://doi.org/10.1016/j.catcom.2018.07.004
14. Bai S.-T., Sinha V., Kluwer A.M., Linnebank P.R., Abiri Z., Dydio P., Lutz M., de Bruin B., Reek J.N.H. // Chemical Science. 2019. V. 10. N 31. P. 7389–7398. https://doi.org/10.1039/C9SC02558H
15. Williams C., Ferreira M., Tilloy S., Monflier E., Mapolie S.F., Smith G.S. // Inorganica Chimica Acta. 2020. V. 502. https://doi.org/10.1016/j.ica.2019.119341
16. Mashabane T.L., Ramollo G.K., Kleinhans G., Doncker S.D., Siangwata S., Fernandes M.A., Lemmerer A., Smith G.S., Bezuidenhout D.I. // Journal of Organometallic Chemistry. 2020. V. 920. 121341. https://doi.org/10.1016/j.jorganchem.2020.121341
17. Siangwata S., Goosen N.J., Smith G.S. // Applied Catalysis A: General. 2020. V. 603. 117736. https://doi.org/10.1016/j.apcata.2020.117736
18. Yu S.-m., Snavely W.K., Chaudhari R.V., Subramaniam B. // Molecular Catalysis. 2020. V. 484. 110721. https://doi.org/10.1016/j.mcat.2019.110721
19. Zhao L., Pudasaini B., Genest A., Nobbs J.D., Low C.H., Stubbs L.P., van Meurs M., Rösch N. // ACS Catalysis. 2017. V. 7. N 10. P. 7070–7080. https://doi.org/10.1021/acscatal.7b02278
20. Li Y., Chaudhari R.V. // https://pubs.acs.org/action/showCitFormats?doi=10.1021%2Fie200676h&href=/doi/10.1021%2Fie200676hIndustrial & Engineering Chemistry Research. 2011. V. 50. N 16. P. 9577–9586. https://doi.org/10.1021/ie200676h
21. Cui L., Yang X., Zeng Y., Chen Y., Wang C. // Molecular Catalysis. 2019. V. 468. P. 57–61. https://doi.org/10.1016/j.mcat.2019.02.015
22. Rosales M., Pacheco I., Medira J., Fernandez J., Gonzalez A., Izquierto R. // Catalysis Letters. 2014. V. 144. N 10. P. 1717–1727. https://doi.org/10.1007/s10562-014-1335-0
23. Amézquita-Valencia M., Achonduh G., Alper H. // Journal of Organic Chemistry. 2015. V. 80. N 12. P. 6419–6424. https://doi.org/10.1021/acs.joc.5b00851
24. Li J., Ren W., Dai J., Shi Y. // Organic Chemistry Frontiers. 2018. V. 5. N 1. P. 75–79. https://doi.org/10.1039/C7QO00622E
25. Pongrácz P., Abu Seni A., Mika L.T., Kollár L. // Molecular Catalysis. 2017. V. 438. P. 15–18. https://doi.org/10.1016/j.mcat.2017.05.010
26. Schmidt M., Pogrzeba T., Hohl L., Weber A., Kielholz A., Kraume M., Schomäcker R. // Molecular Catalysis. 2018. V. 439. P. 1-8. https://doi.org/10.1016/j.mcat.2017.06.014
27. Li B., Lee S., Shin K., Chang S. // Organic Letters. 2014. V. 16. N 7. P. 2010–2013. https://doi.org/10.1021/ol500579n
28. Wu L., Liu Q., Jackstell R., Beller M. // Organic Chemistry Frontiers. 2015. V. 2. N 7. P. 771–774. https://doi.org/10.1039/C5QO00071H
29. Queirolo M., Vezzani A., Mancuso R., Gabriele B., Costa M., Ca’ N.D. // Journal of Molecular Catalysis A: Chemical. 2015. V. 398. P. 115–126. https://doi.org/10.1016/j.molcata.2014.11.028
30. Nifant’ev I.E., Sevostyanova N.T., Batashev S.A., Vinogradov A.A., Vinogradov A.A., Churakov A.V., Ivchenko P.V. // Applied Catalysis A: General. 2019. V. 581. P. 123–132. https://doi.org/10.1016/j.apcata.2019.05.030
31. Sevostyanova N., Batashev S. // Reaction Kinetics, Mechanisms and Catalysis. 2017. V. 122. N 1. P. 315–331. https://doi.org/10.1007/s11144-017-1238-3
32. Севостьянова Н.Т., Баташев С.А. // Химическая физика. 2018. Т. 37. № 6. С. 94–96. https://doi.org/10.7868/S0207401X18060122
33. Marinkovic J.B., Benders S., Garcia-Suarez E.J., Weiß A., Gundlach C., Haumann M., Küppers M., Blümich B., Fehrmann R., Riisager A. // RSC Advances. 2020. V. 10. N 31. P. 18487–18495. https://doi.org/10.1039/C9RA09515B
34. Logemann M., Marinkovic J.M., Schörner M., García-Suárez E.J., Hecht C., Franke R., Wessling M., Riisager A., Fehrmann R., Haumann M. // Green Chemistry. 2020. V. 22. N 17. P. 5691–5700. https://doi.org/10.1039/D0GC01483D
35. Wang Y., Yan L., Li C., Jiang M., Wang W., Ding Y. // Applied Catalysis A: General. 2020. V. 551. P. 98–105. https://doi.org/10.1016/j.apcata.2017.12.013
36. Wang Z., Yang Y. // RSC Advances. 2020. V. 10. N 49. P. 29263–29267. https://doi.org/10.1039/d0ra04816j
37. Sharma D., Ganesh V., Sakthivel A. // Applied Catalysis A: General. 2018. V. 555. P. 155–160. https://doi.org/10.1016/j.apcata.2018.02.019
38. Paganelli S., Tassini R., Rathod V.D., Onida B., Fiorilli S., Piccolo O. // Catalysis Letters. 2021. V. 151. N 5. P. 1508–1521. https://doi.org/10.1007/s10562-020-03407-5
39. Bhagade S.S., Chaurasia S.R., Bhanage B.M. // Catalysis Today. 2018. V. 309. P. 147–152. https://doi.org/10.1016/j.cattod.2017.08.022
40. Chada J.P., Xu Z., Zhao D., Watson R.B., Brammer M., Bigi M., Rosenfeld D.C., Hermans I., Huber G.W. // Catalysis Communications. 2018. V. 114. P. 93–97. https://doi.org/10.1016/j.catcom.2018.06.021
41. Biermann U., Bornscheuer U., Meier M.A.R., Metzger J.O., Schäfer H.J. // Angewandte Chemie International Edition. 2011. V. 50. N 17 P. 3854−3871. https://doi.org/10.1002/anie.201002767
42. Lestari S., Mäki-Arvela P., Beltramini J., Max Lu G.Q., Murzin D.Y. // ChemSusChem. 2009. V. 2. N 12. P. 1109–1119. https://doi.org/10.1002/cssc.200900107
43. Gunstone F.D. // Lipid Technology. 2008. V. 20. N 11. P. 264. https://doi.org/10.1002/lite.200800070
44. Stempfle F., Roesle P., Mecking S. // Biobased Monomers, Polymers, and Materials: ACS Symposium Series. Washington, 2012. V. 1105. P. 151−164. https://doi.org/10.1021/bk-2012-1105.ch010
45. Behr A., Seidensticker T., Vorholt A.J. // European Journal of Lipid Science and Technology. 2014. V. 116. N 4. P. 477–485. https://doi.org/10.1002/ejlt.201300224
46. Chikkali S., Stempfle F., Mecking S. // Macromolecular Rapid Communications. 2012. V. 33. N 13. P. 1126–1129. https://doi.org/10.1002/marc.201200226
47. Vieira C.G., dos Santos E.N., Gusevskaya E.V. // Applied Catalysis A: General. 2013. V. 466. P. 208–215. https://doi.org/10.1016/j.apcata.2013.06.037
48. Yuki Y., Takahashi K., Tanaka Y., Nozaki K. // Journal of American Chemical Society. 2013. V. 135. N 46. P. 17393–17400. https://doi.org/10.1021/ja407523j
49. Stempfle F., Quinzler D., Heckler I., Mecking S. // Macromolecules. 2011. V. 44. N 11. P. 4159−4166. https://doi.org/10.1021/ma200627e
50. Goldbach V., Roesle P., Mecking S. // ACS Catalysis. 2015. V. 5. N 10. P. 5951−5972. https://doi.org/10.1021/acscatal.5b01508
51. Stempfle F., Ortmann P., Mecking S. // Chemical Reviews. 2016. V. 116. N 7. P. 4597−4641. https://doi.org/10.1021/acs.chemrev.5b00705
52. Seidensticker T., Vorholt A.J., Behr A. // European Journal of Lipid Science and Technology. 2016. V. 118. N 1. P. 3−25. https://doi.org/10.1002/ejlt.201500190
53. de Vries J.G. // Chemical Record. 2016. V. 16. N 6. P. 2787−2800. https://doi.org/10.1002/tcr.201600102
54. Patent WO 2012/131027 A1. 2012.
55. Patent WO 2012/131028 A1. 2012.
56. Nifant’ev I., Bagrov V., Vinogradov A., Vinogradov A., Ilyin S., Sevostyanova N., Batashev S., Ivchenko P.V. // Lubricants. 2020. V. 8. N 5. P. 50–59. https://doi.org/10.3390/lubricants8050050
57. Vavasori A., Toniolo L., Cavinato G. // Journal of Molecular Catalysis A: Chemical. 2003. V. 191. Iss. 1. P. 9–21. https://doi.org/10.1016/S1381-1169(02)00358-8
58. Vavasori A., Cavinato G., Toniolo L. // Journal of Molecular Catalysis A: Chemical. 2001. V. 176. Iss. 1–2. P. 11-18. https://doi.org/10.1016/S1381-1169(01)00235-7
59. Amadio E., Cavinato G., Härter P., Toniolo L. // Journal of Organometallic Chemistry. 2013. V. 745-746. P. 115–119. http://doi.org/10.1016/j.jorganchem.2013.07.043
60. Cavinato G., Toniolo L., Vavasori A. // Journal of Molecular Catalysis A: Chemical. 2004. V. 219. Iss. 2. P. 233–240. https://doi.org/10.1016/j.molcata.2004.04.014
61. Петров Э.С. // Журнал физической химии. 1988. Т. 62. № 10. С. 2858–2868.
62. Аверьянов В.А., Севостьянова Н.Т., Баташев С.А., Демерлий А.М. // Нефтехимия. 2013. Т. 53. № 1. С. 43–49. https://doi.org/10.7868/S0028242113010024
63. Goldbach V., Falivene L., Caporaso L., Cavallo L., Mecking S. // ACS Catalysis. 2016. V. 6. Iss. 12. P. 8229−8238. https://doi.org/10.1021/acscatal.6b02622
64. Hess S.K., Schunck N.S., Goldbach V., Ewe D., Kroth P.G., Mecking S. // Journal of American Chemical Society. 2017. N 139. P. 13487−13491. https://doi.org/10.1021/jacs.7b06957
65. Лебедев Н.Н., Манаков М.Н., Швец В.Ф. Теория химических процессов основного органического и нефтехимического синтеза. М.: Химия, 1984. 376 c.
66. Суербаев Х.А., Кудайбергенов Н.Ж., Вавасори А. // Журнал общей химии. 2017. Т. 87. № 4. С. 574–579.
67. Patent WO 2013/107904 A1. 2013.
68. Goldbach V., Krumova M., Mecking S. // ACS Catalysis. 2018. V. 8. N 6. P. 5515–5525. http://doi.org/10.1021/acscatal.8b00981
69. Oppenheim J.P., Dickerson G.L. (updated by staff 2014). Adipic Acid. Kirk-Othmer Encyclopedia of Chemical Technology, New York: Wiley, 1991-2022. P. 1–27. https://doi.org/10.1002/0471238961.0104091604012209.a01.pub3
70. Furst M.R.L., Seidensticker T., Cole-Hamilton D.J. // Green Chemistry. 2013. V. 15. N 5. P. 1218−1225. https://doi.org/10.1039/C3GC37071B
71. Gaide T., Behr A., Arns A., Benski F., Vorholt A.J. // Chemical Engineering and Processing. 2016. V. 99. P. 197−204. https://doi.org/10.1016/j.cep.2015.07.009
72. Lemberg M., Sadowski G. // Journal of Chemical and Engineering Data. 2016. V. 61. N 9. P. 3317–3325. https://doi.org/10.1021/acs.jced.6b00360
73. Dong K., Sang R., Wei Z., Liu J., Dühren R., Spannenberg A., Jiao H., Neumann H., Jackstell R., Franke R., Beller M. // Chemical Science. 2018. V. 9. N 9. P. 2510–2516. https://doi.org/10.1039/C7SC02964K
74. Blanco C., Godard C., Zangrando E., Ruiz A., Claver C. // Dalton Transactions. 2012. V. 41. N 23. P. 6980–6991. https://doi.org/10.1039/C2DT30267E
75. Stempfle F., Ritter B.S., Mülhaupt R., Mecking S. // Green Chemistry. 2014. V. 16. N 4. P. 2008−2014. https://doi.org/10.1039/C4GC00114A
76. Witt T., Stempfle F., Roesle P., Häußler M., Mecking S. // ACS Catalysis. 2015. V. 5. N 8. P. 4519−4529. https://doi.org/10.1021/acscatal.5b00825
77. Liu Y., Mecking S. // Angewandte Chemie International Edition. 2019. V. 58. N 11. P. 3346−3350. https://doi.org/10.1002/anie.201981161
78. Химический энциклопедический словарь / Гл. ред. И.Л. Кнунянц. М.: Сов. Энциклопедия, 1983. 792 с.
79. Quinzler D., Mecking S. // Angewandte Chemie. 2010. V. 122. N 25. P. 4402–4404. https://doi.org/10.1002/ange.201001510
80. Cole-Hamilton D.J. // Angewandte Chemie International Edition. 2010. V. 49. N 46. P. 8564–8566. https://doi.org/10.1002/anie.201002593
81. Christl J.T., Roesle P., Stempfle F., Wucher P., Göttker-Schnetmann I., Müller G., Mecking S. // Chemistry – A European Journal. 2013. V. 19. N 50. P. 17131−17140. https://doi.org/10.1002/chem.201301124
82. Behr A., Vorholt A.J., Rentmeister N. // Chemical Engineering Science. 2013. V. 99. P. 38−43. https://doi.org/10.1016/j.ces.2013.05.040
83. Herrmann N., Köhnke K., Seidensticker T. // ACS Sustainable Chemical Engineering. 2020. V. 8. N 29. P. 10633–10638. https://doi.org/10.1021/acssuschemeng.0c03432
84. Furst M.R.L., Goff R.L., Quinzler D., Mecking S., Botting C.H., Cole-Hamilton D.J. // Green Chemistry. 2012. V. 14. N 2. P. 472–477. http://doi.org/10.1039/C1GC16094J
85. Walther G., Knöpke L.R., Rabeah J., Chęcińnski M.P., Jiao H., Bentrup U., Brückner A., Martin A., Köckritz A. // Journal of Catalysis. 2013. V. 297. P. 44–55. http://doi.org/10.1016/j.jcat.2012.09.016
86. Walther G. // ChemSusChem. 2014. V. 7. N 8. 2081–2088. http://doi.org/10.1002/cssc.201402379
87. Walther G., Deutsch J., Martin A., Baumann F.-E., Fridag D., Franke R., Köckritz A. // ChemSusChem. 2011. V. 4. N 8. P. 1052–1054. http://doi.org/10.1002/cssc.201100187
88. Roesle P., Dürr C.J., Möller H.M., Cavallo L., Caporaso L., Mecking S.J. // Journal of American Chemical Society. 2012. V. 134. N 42. P. 17696–17703. http://doi.org/10.1021/ja307411p
89. Roesle P., Caporaso L., Schnitte M., Goldbach V., Cavallo L., Mecking S.J. // Journal of American Chemical Society. 2014. V. 136. N 48. P. 16871–16881. http://doi.org/10.1021/ja508447d
90. Nobbs J.D., Low C.H., Stubbs L.P., Wang C., Drent E., van Meurs M. // Organometallics. 2017. V. 36. N 2. P. 391–398. http://doi.org/10.1021/acs.organomet.6b00813
91. Liu J., Dong K., Franke R., Neumann H., Jackstell R., Beller M. // Chemical Communications. 2018. V. 54. N 86. P. 12238–12241. https://doi.org/10.1039/C8CC07470D
92. Nifant’ev I., Sevostyanova N., Batashev S., Vorobiev A., Tavtorkin A., Krut’ko D. // Reaction Kinetics, Mechanisms and Catalysis. 2016. V. 119. N 1. P. 75–91. https://doi.org/10.1007/s11144-016-1048-z
93. Севостьянова Н.Т., Баташев С.А., Родионова А.С. // Химическая физика. 2019. Т. 38. № 4. С. 3–11. https://doi.org/10.1134/S0207401X19030075
94. Sang R., Kucmierczyk P., Dong K., Franke R., Neumann H., Jackstell R., Beller M. // Journal of American Chemical Society. 2018. V. 140. Iss. 15. P. 5217–5223. https://doi.org/10.1021/jacs.8b01123
95. Kim D.-S., Park W.-J., Lee C.-H., Jun C.-H. // Journal of Organic Chemistry. 2014. V. 79. Iss. 24. P. 12191-12196. https://doi.org/10.1021/jo501828j
96. Pingen D., Klinkenberg N., Mecking S. // ACS Sustainable Chemistry & Engineering. 2018. V. 6. N 9. P. 11219–11221. https://doi.org/10.1021/acssuschemeng.8b02939
97. Garcia-Suarez E.J., Paolicchi D., Li H., He J., Yang S., Riisager A., Saravanamurugan S. // Applied Catalysis A: General. 2019. V. 569. P. 170–174. https://doi.org/10.1016/j.apcata.2018.10.031
98. Roesle P., Stempfle F., Hess S.K., Zimmerer J., Río Bártulos C., Lepetit B., Eckert A., Kroth P.G., Mecking S. // Angewandte Chemie International Edition. 2014. V. 53. N 26. P. 6800–6804. https://doi.org/10.1002/anie.201403991
99. Kalck P., Urrutigoïty M., Dechy-Cabaret O. // Topics in Organometallic Chemistry. 2006. V. 18. P. 97–123. https://doi.org/10.1007/3418_018
100. Chenal T., Cipres I., Jenk J., Kalck Ph., Perez Y. // Journal of Molecular Catalysis. 1993. V. 78. Iss. 3. P. 351–366. https://doi.org/10.1016/0304-5102(93)87064-F
101. Da Rocha L.L., Dias A.O., Dos Santos E.N., Augusti R., Gusevskaya E. // Journal of Molecular Catalysis A: Chemical. 1998. V. 132. Iss. 2–3. P. 213–221. https://doi.org/10.1016/S1381-1169(97)00248-3
102. Lenoble G., Urrutigoïty M., Kalck Ph. // Tetrahedron Letters. 2001. V. 42. Iss. 22. P. 3697–3700. https://doi.org/10.1016/S0040-4039(01)00548-2
103. Lenoble G., Urrutigoïty M., Kalck Ph. // Journal of Organometallic Chemistry. 2002. V. 643–644. P. 12–18. https://doi.org/10.1016/S0022-328X(01)01245-1
104. Nguyen D.H., Hebrard F., Duran J., Polo A., Urrutigoïty M., Kalck Ph. // Applied Organometallic Chemistry. V. 19. Iss. 1. P. 30–34. https://doi.org/10.1002/aoc.727
105. El Ali B., Alper H. // Synlett. 2000. V. 2. P. 161–171. https://doi.org/10.1055/s-2000-6477
106. Busch H., Stempfle F., Hess S., Grau E., Mecking S. // Green Chemistry. 2014. V. 16. N 10. P. 4541–4545. https://doi.org/10.1039/C4GC01233J
107. Behr L.J., Wintzer A., Willstumpf A, Dinges M. // Catalysis Science & Technology. 2013. V. 3. N 6. P. 1573–1578. https://doi.org/10.1039/C3CY20734J
Рецензия
Для цитирования:
Севостьянова Н.Т., Баташев С.А. Алкоксикарбонилирование ненасыщенных субстратов растительного происхождения с использованием палладиевых катализаторов как путь к получению сложноэфирных продуктов. Катализ в промышленности. 2023;23(1):37-55. https://doi.org/10.18412/1816-0387-2023-1-37-55
For citation:
Sevostyanova N.T., Batashev S.A. Alkoxycarbonylation of Unsaturated Phytogenic Substrates Using Palladium Catalysts as a Way for Obtaining Ester Products. Kataliz v promyshlennosti. 2023;23(1):37-55. (In Russ.) https://doi.org/10.18412/1816-0387-2023-1-37-55