Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Bifunctional cobalt catalyst for the synthesis of waxy diesel fuel by the Fischer–Tropsch method – from development to introduction. Part 2. Optimization of the catalyst component composition

https://doi.org/10.18412/1816-0387-2023-2-15-25

Abstract

The effect exerted by the content of metallic (Co-Al2O3/SiO2 catalyst) and acidic (ZSM-5 zeolite in the H-form) components on the properties of bifunctional catalyst for the integrated synthesis of waxy diesel fuel by the Fischer–Tropsch method was studied. Catalysts represented by a composite mixture with a boehmite binder were characterized by XRD, BET and TPR methods. The testing was performed in a flow reactor with a fixed catalyst bed at a pressure of 2.0 MPa, temperature 240 °С and gas hourly space velocity 1000 h–1. Activity and selectivity of the catalysts as well as the fractional and hydrocarbon composition of the products were investigated in dependence on the ratio of components. It was found that productivity of the synthesis for С5+ hydrocarbons and selectivity for the С11–С18 diesel fraction products with a high content of isomeric products correlated with the ratio of metallic and acidic components in the catalysts. The composition of the catalyst recommended for the diesel fuel production has the 1.17 ratio of metallic and acidic components.

About the Authors

R. E. Yakovenko
Platov South-Russian State Polytechnic University, Novocherkassk
Russian Federation


V. G. Bakun
Platov South-Russian State Polytechnic University, Novocherkassk
Russian Federation


I. N. Zubkov
Platov South-Russian State Polytechnic University, Novocherkassk
Russian Federation


O. P. Papeta
Platov South-Russian State Polytechnic University, Novocherkassk
Russian Federation


A. N. Saliyev
Platov South-Russian State Polytechnic University, Novocherkassk
Russian Federation


A. P. Savost'yanov
Platov South-Russian State Polytechnic University, Novocherkassk
Russian Federation


References

1. Dry M.E. // Catalysis Today. 2002. V. 71. № 3-4. Р. 227–241. DOI: 10.1016/S0920-5861(01)00453-9.

2. Khodakov A.Y., Wei C., Fongarland P. // Chemical Reviews. 2007. V. 107. № 5. P. 1692–1744. DOI: 10.1021/cr050972v.

3. Klerk A. Fischer-Tropsch refining. John Wiley & Sons, 2012. 620 р.

4. Adeleke A.A., Liu X., Lu Х., Moyo M., Hildebrandt D. // Reviews in Chemical Engineering. 2020. V. 36. № 4. P. 437–457. DOI: 10.1515/revce-2018-0012.

5. Chunxiang Z., George M.B. // Applied Catalysis B: Environmental. 2018. V. 235. Р. 92–102. DOI: 10.1016/j.apcatb.2018.04.063.

6. Sartipi S., Parashar K., Valero-Romero M., Santos V., Linden B., Makkee M., Kapteijn F., Gascon J. // Journal of Catalysis. 2013. V. 305. Р. 179–190. DOI: 10.1016/j.jcat.2013.05.012.

7. Sartipi S., Makkee M., Kapteijn F., Gascon J. // Catalysis Science and Technology. 2014. V. 4. № 4. P. 893–907. DOI: 10.1039/C3CY01021J.

8. Leckel D. // Fuel Processing Technology. 2011. V. 92. № 5. Р. 959–969. DOI: 10.1016/j.fuproc.2010.12.017.

9. Кинзуль А.П., Хандархаев С.В., Писаренко Н.О., Бурюкин Ф.А., Твердохлебов В.П. // Мир нефтепродуктов. 2012. № 8. С. 7–11.

10. Maddi B., Davidson S., Job H., Dagle R., Guo M., Gray M., Ramasamy K.K. // Catalysis Letters. 2021. V. 151. № 2. Р. 526–537. DOI: 10.1007/s10562-020-03324-7.

11. Wang Y., Yu J., Qiao J., Sun Y., Jin W., Zhang H., Ma J. // Journal of the Energy Institute. 2020. V. 93. № 3. Р. 1187–1194. DOI: 10.1016/j.joei.2019.11.002.

12. Li X., Chen Y., Liu S., Zhao N., Jiang X., Su M., Li Z. // Chemical Engineering Journal. 2021. V. 416. Р. 129180. DOI: 10.1016/j.cej.2021.129180.

13. Xing C., Li M., Zhang G., Noreen A., Fu Y., Yao M., Lu C., Gao X., Yang R., Amoo C.C. // Fuel. 2021. V. 285. Р. 119233. DOI: 10.1016/j.fuel.2020.119233.

14. Sadek R. Chalupka K. A., Mierczynski, P., Rynkowski, J., Millot, Y., Valentin, L., Casale S., Dzwigaj, S. // Catalysis Today. 2020. V. 354. Р. 109–122. DOI: 10.1016/j.cattod.2019.05.004.

15. Přech J., Strossi Pedrolo D.R., Marcili N.R., Gu B., Peregudova A.S., Mazur M., Ordomsky V.V., Valtchev V., Khodakov A.Y. // ACS Catalysis. 2020. V. 10. № 4. Р. 2544–2555. DOI: 10.1021/acscatal.9b04421.

16. Sadek R., Chalupka K.A., Mierczynski P., Rynkowski J., Gurgul J., Dzwigaj S. // Catalysts. 2019. V. 9. № 6. Р. 498–511. DOI: 10.3390/catal9060498.

17. Li J., He Y., Tan L., Zhang P., Peng X., Oruganti A., Yang G., Abe H., Wang Y., Tsubaki N. // Nature Catalysis. 2018. V. 1. № 10. P. 787–793. DOI: 10.1038/s41929-018-0144-z.

18. Martínez-Vargas D.X., Sandoval-Rangel L., Campuzano-Calderon O., Romero-Flores M., Lozano F.J., Nigam K. D. P., Mendoza A., Montesinos-Castellanos A. // Industrial & Engineering Chemistry Research. 2019. V. 58. № 35. P. 15872–15901. DOI: 10.1021/acs.iecr.9b01141.

19. Асалиева Е Ю., Кульчаковская Е.В., Синева Л.В., Мордкович В.З. // Нефтехимия. 2020. Т. 60. № 1. С. 76–82. DOI: 10.31857/S0028242120010025.

20. Синева JI.В., Асалиева Е.Ю., Мордкович В.З. // Успехи химии. 2015. Т. 84. № 11. С. 1176–1189. DOI: 10.1070/RCR4464.

21. Akhmedov V.M., Al‐Khowaiter S.H. // Catalysis Reviews. 2007. V. 49. № 1. Р. 33–139. DOI: 10.1080/01614940601128427.

22. Yakovenko R.E., Savost’yanov A.P., Narochnyi G.B., Soromotin V.N., Zubkov I.N., Papeta O.P., Svetogorov R.D., Mitchenko S.A. // Catalysis Science & Technology. 2020. V. 10. № 22. Р. 7613–7629. DOI: 10.1039/D0CY00975J.

23. Yakovenko R.E., Zubkov I.N., Savost’yanov A.P., Soromotin V.N., Krasnyakova T.V., Papeta O.P., Mitchenko S.A. // Kinetics and Catalysis. 2021. V. 62. № 1. Р. 172–180. DOI: 10.1134/S0023158421010122.

24. Нарочный Г.Б., Яковенко Р.Е., Савостьянов А.П., Бакун В.Г. // Катализ в промышленности. 2016. № 1. С. 37–42. DOI: 10.18412/1816-0387-2016-1-37-42.

25. Yakovenko R.E., Zubkov I.N., Narochniy G.B., Papeta O.P., Denisov O.D., Savost’yanov A. P. // Kinetics and Catalysis. 2020. V. 61. № 2. Р. 310–317. DOI: 10.1134/S0023158420020111.

26. Мурзин Д.Ю. // Кинетика и катализ. 2020. Т. 61. № 1. С. 85–98. DOI: 10.31857/S0453881120010086.

27. Яковенко Р.Е., Зубков И.Н., Бакун В.Г., Аглиуллин М.Р., Салиев А.Н., Савостьянов А.П. // Катализ в промышленности. 2021. Т. 21. № 1-2. С. 30–40. DOI: 10.18412/1816-0387-2021-1-2-30-40.

28. PDF-2. The powder diffraction file TM. International Center for Diffraction Data (ICDD). PDF-2 Release 2012. web site: www.icdd.com, 2014.

29. Young R.A. The Rietveld Method. Oxford University Press, 1995. 298 p.

30. Schanke D., Vada S., Blekkan E.A., Hilmen A.M., Hoff A., Holmen A. // Journal of Catalysis. 1995. V. 156. № 1. Р. 85–95. DOI: 10.1006/jcat.1995.1234.

31. Xu D., Li W., Duan H., Ge Q., Xu H. // Catalysis Letters. 2005. V. 102. № 3. P. 229-235. DOI: 10.1007/s10562-005-5861-7.

32. Официальный сайт Sasol URL: https://www.sasolgermany.de/fileadmin/doc/alumina/Neu_2017/0372.SAS-BR Inorganics_Pural_Catapal_WEB.pdf (дата обращения 02.06.2022).

33. Savost’yanov A.P., Yakovenko R.E., Sulima S.I., Bakun V.G., Narochnyi G.B., Chernyshev V.M., Mitchenko S.A. // Catalysis Today. 2017. V. 279. P.107–114. DOI: 10.1016/j.cattod.2016.02.037.

34. Сулима С.И., Бакун В.Г., Яковенко Р.Е., Шабельская Н.П., Салиев А.Н., Нарочный Г.Б., Савостьянов А.П. // Кинетика и катализ. 2018. Т. 59. № 2. С. 240–250. DOI: 10.7868/S0453881118020132.

35. Conte M., Xu B., Davies T.E. // Microporous Mesoporous Materials. 2012. V. 164. P. 207–213. DOI: 10.1016/j.micromeso.2012.05.001.

36. Шавалеев Д.А., Травкина О.С., Алехина И.Е., Эрштейн А.С., Басимова Р.А., Павлов М.Л. // Вестник Башкирского университета. 2015. Т. 20. № 1. С. 58–65.

37. Чернавский П.А. // Журнал физической химии. 2003. Т. 77. № 4. С. 636–640.

38. Булавченко О.А., Черепанова С.В., Малахов В.В., Довлитова Л.C. // Кинетика и катализ. 2009. Т. 50. № 2. С. 205–211.

39. Pardo-Tarifa F., Cabrera S., Sanchez-Dominguez M., Boutonnet M. // International journal of hydrogen energy. 2017. V. 42. № 15. Р. 9754–9765. DOI: 10.1016/j.ijhydene.2017.01.056.


Review

For citations:


Yakovenko R.E., Bakun V.G., Zubkov I.N., Papeta O.P., Saliyev A.N., Savost'yanov A.P. Bifunctional cobalt catalyst for the synthesis of waxy diesel fuel by the Fischer–Tropsch method – from development to introduction. Part 2. Optimization of the catalyst component composition. Kataliz v promyshlennosti. 2023;23(2):15-25. (In Russ.) https://doi.org/10.18412/1816-0387-2023-2-15-25

Views: 411


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)