Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

The transformation of amorphous aluminum oxide during the catalytic dehydration of aromatic alcohol

https://doi.org/10.18412/1816-0387-2023-2-48-57

Abstract

A wide application of aluminum oxides in the synthesis of heterogeneous catalysts for petrochemistry and oil refining makes it necessary to reveal factors determining the efficiency of the catalytic systems. However, the literature provides no data concerning the effect produced by the amorphous phase in aluminum oxide catalysts on characteristics of the catalytic reaction. Usually the content of amorphous phase is not categorized; however, its presence may significantly deteriorate the catalyst efficiency. X-ray diffraction analysis, low-temperature nitrogen adsorption, electron microscopy and temperature-programmed desorption of ammonia were used in this work to examine samples of the amorphous aluminum oxide obtained from two different precursors. Catalytic properties of the samples were investigated during the vaporphase dehydration of 1-phenylethanol to styrene. It was shown for the first time that the transformation of amorphous aluminum oxide in the catalytic reaction decreased the conversion of alcohol from 84 (for the fresh catalyst) to 64 % (for the regenerated sample). Crystallization of amorphous aluminum oxide by the high-temperature treatment enhanced the catalytic performance, but it did not reach the desired values due to a considerable deterioration of the textural characteristics and acidic properties of the aluminum oxide surface.

About the Authors

A. V. Boretskaya
A.M. Butlerov Institute of Chemistry, Kazan Federal University, Kazan
Russian Federation


M. I. Farid
A.M. Butlerov Institute of Chemistry, Kazan Federal University, Kazan
Russian Federation


S. R. Egorova
A.M. Butlerov Institute of Chemistry, Kazan Federal University, Kazan
Russian Federation


A. A. Lamberov
A.M. Butlerov Institute of Chemistry, Kazan Federal University, Kazan
Russian Federation


References

1. Wang X., Pan D., Xu Q., He M., Chen S., Yu F., Li R. // Mater. Lett. 2014. V. 135. P. 35–38. https://doi.org/10.1016/j.matlet.2014.07.133

2. Lesaint C., Glomm W. R., Borg Ø., Eri S., Rytter E., Øye G. // Appl. Catal. A Gen. 2008. V. 351. N 1. P. 131–135. https://doi.org/10.1016/j.apcata.2008.09.008

3. Kim S.-M., Lee Y.-J., Bae J. W., Potdar H.S., Jun K.-W. // Appl. Catal. A Gen. 2008. V. 348. P. 113–120. https://doi.org/10.1016/j.apcata.2008.06.032

4. Enger B.C., Fossan Å.-L., Borg Ø., Rytter E., Holmen A. // J. Catal. 2011. V. 284. P. 9–22. https://doi.org/10.1016/j.jcat.2011.08.008

5. Vincent M.J., Gonzalez R.D. // Appl. Catal. A Gen. 2001. V. 217. P. 143–156. https://doi.org/10.1016/S0926-860X(01)00586-5

6. Ламберов А.А., Халилов И.Ф., Ильясов И.Р., Герасимова А.В., Бикмурзин А.Ш., Шатилов В.М. // Катализ в промышленности. 2013. № 5. С. 29–38.

7. Sifontes Á.B., Gutierrez B., Mónaco A., Yanez A., Díaz Y., Méndez F.J., Llovera L., Cañizales E., Brito J.L. // Biotechnol. Rep. 2014. V. 4. P. 21-29. https://doi.org/10.1016/j.btre.2014.07.001

8. Toledo R., Sánchez B., Porras R., Ramírez F., Larios P., Ramirez M., Rosales M. // Int. J. Chem. React. Eng. 2018. V. 16. N. 11. P. 20170141. https://doi.org/10.1515/ijcre-2017-0141

9. Trueba M., Trasatti S.P. // Eur. J. Inorg. Chem. 2005. V. 17. P. 3393–3403. https://doi.org/10.1002/ejic.200500348

10. Krokidis X., Raybaud P., Gobichon A.E., Rebours B., Euzen P., Toulhoat H. // J. Phys. Chem. B. 2001. V. 105. P. 5121. https://doi.org/10.1021/jp0038310

11. Pigeon Th., Chizallet C., Raybaud P. // J. Catal. 2022. V. 405. P. 140-151. https://doi.org/10.1016/j.jcat.2021.11.011

12. Shancita I., Campbell L. L. Wu Ch.-Ch., Aquino A. J. A., Walck S. D., Tunega D., Pantoya M.L. // J. Phys. Chem. C. 2019. V. 123. P. 15017-15026. https://doi.org/10.1021/acs.jpcc.9b02663

13. He F., Li W., Panga T., Zhou L., Wang Ch., Liu H., Li M., He X. // Ceram. Intern. 2022. V. 48. P. 18035–18047. https://doi.org/10.1016/j.ceramint.2022.02.212

14. Giacobello F., Mollica-Nardo V., Foti C., Celeste Ponterio R., Saija F., Trusso S., Sponer J., Cassone G., Giuffrè O. // Liquids. 2022. V. 2. P. 26-38. https://doi.org/10.3390/liquids2010003

15. Mohammadi M., Khodamorady M., Tahmasbi B., Bahrami K., Ghorbani-Choghamarani A. // J. Ind. Eng. Chem. 2021. V. 97. P. 1–78.

16. Yang Y., Wang N., Pang X., Yasinskiy A., Tan Y., Yu J., Wang Zh., Shi Zh. // J. Mater. Res.&Technol. 2021. V. 15. P. 6640-6646. https://doi.org/10.1016/j.jmrt.2021.11.099

17. Mavrič A.; Fanetti M., Mali G., Valant M. // J. Non-Crystal. Solids. 2018. V. 499. P. 363-370. https://doi.org/10.1016/j.jnoncrysol.2018.07.055

18. Oka Y., Takahashi T., Okada K., Iwai S.-I. // J. Non-Crystal. Solids. 1979. V. 30. N. 3. P. 349. https://doi.org/10.1016/0022-3093(79)90172-8

19. El-Mashri S.M., Jones R.G., Forty A.J. // Philos. Mag. A. 1983. V. 48. P. 665. https://doi.org/10.1080/01418618308236536

20. Campbell T., Kalia R.K., Nakano A., Vashishta P., Ogata S., Rodgers S. // Phys. Rev. Lett. 1999. V. 82. P. 4866. https://doi.org/10.1103/PhysRevLett.82.4866

21. Boretskaya A., Il'yasov I., Lamberov A., Popov A. // Appl. Surf. Sci. 2019. V. 496. N. 1. P. 143635. https://doi.org/10.1016/j.apsusc.2019.143635

22. Boretskaya A., Il'yasov I., Popov A., Lamberov A. // Mater. Today Chem. 2021. V. 19. P. 100387. https://doi.org/10.1016/j.mtchem.2020.100387

23. Bhogeswararao S., Srinivas D. // J. Catal. 2015. V. 327. P. 65-77. https://doi.org/10.1016/j.jcat.2015.04.018

24. Shen J., Cortright R. D., Chen Y., Dumesic J.A. // J. Phys. Chem. 1994. V. 98. P. 8067–8073.

25. Косенко Н.Ф., Филатова Н.В., Липина Е.А. // Изв. вузов. Химия и хим. технология. 2017. Т. 60. Вып. 8. С. 31–36. http:// https://doi.org/10.6060/tcct.2017608.5599

26. Sovar M.-M., Samélor D., Gleizes A.N., Vahlas C. // Surf. Coat. Technol. 2007. V.201. P. 9159–9162. http://doi.org/10.1016/j.surfcoat.2007.04.063

27. Khosravi M.M., Andrus M.B., Burt S.R., Woodfield B.F. // Polyhedron. 2013. V. 62. P. 18–25. https://doi.org/10.1016/j.poly.2013.06.019

28. Wang Zh., Wu W., Bian X., Wu Y. // Green Process Synth. 2016. 5. 305–310.

29. Xu L., Zhang J., Ding J., Liu T., Shi G., Li X., Guo R. // Minerals. 2020. V. 10. N. 1. P. 72. https://doi.org/10.3390/min10010072

30. Карнаухов А.П. Адсорбция. Текстура дисперсных и пористых материалов. Новосибирск: Наука; Сиб. предприятие РАН, 1999. 470 с.

31. Yurdakal S., Garlisi C., Özcan L., Bellardita M., Palmisano G. Heterogeneous Photocatalysis. Ed. by Marci G., Palmisano L. Netherlands: Elsevier, 2019. P. 87. https://doi.org/10.1016/b978-0-444-64015-4

32. Shafi K.V.P.M., Ulman A., Lai J., Yang N.L., Cui M.H. // J. Am. Chem. Soc. 2003. V. 125. N. 14. P. 4010–4011. https://doi.org/10.1021/ja0213625

33. Landry C.C., Pappé N., Mason M.R., Apblett A.W., Tyler A.N., MacInnes A.N., Barron A.R. // J. Mater. Chem. 1995. V. 5. P. 331–341. https://doi.org/10.1039/JM9950500331


Review

For citations:


Boretskaya A.V., Farid M.I., Egorova S.R., Lamberov A.A. The transformation of amorphous aluminum oxide during the catalytic dehydration of aromatic alcohol. Kataliz v promyshlennosti. 2023;23(2):48-57. (In Russ.) https://doi.org/10.18412/1816-0387-2023-2-48-57

Views: 349


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)