

The transformation of amorphous aluminum oxide during the catalytic dehydration of aromatic alcohol
https://doi.org/10.18412/1816-0387-2023-2-48-57
Abstract
A wide application of aluminum oxides in the synthesis of heterogeneous catalysts for petrochemistry and oil refining makes it necessary to reveal factors determining the efficiency of the catalytic systems. However, the literature provides no data concerning the effect produced by the amorphous phase in aluminum oxide catalysts on characteristics of the catalytic reaction. Usually the content of amorphous phase is not categorized; however, its presence may significantly deteriorate the catalyst efficiency. X-ray diffraction analysis, low-temperature nitrogen adsorption, electron microscopy and temperature-programmed desorption of ammonia were used in this work to examine samples of the amorphous aluminum oxide obtained from two different precursors. Catalytic properties of the samples were investigated during the vaporphase dehydration of 1-phenylethanol to styrene. It was shown for the first time that the transformation of amorphous aluminum oxide in the catalytic reaction decreased the conversion of alcohol from 84 (for the fresh catalyst) to 64 % (for the regenerated sample). Crystallization of amorphous aluminum oxide by the high-temperature treatment enhanced the catalytic performance, but it did not reach the desired values due to a considerable deterioration of the textural characteristics and acidic properties of the aluminum oxide surface.
About the Authors
A. V. BoretskayaRussian Federation
M. I. Farid
Russian Federation
S. R. Egorova
Russian Federation
A. A. Lamberov
Russian Federation
References
1. Wang X., Pan D., Xu Q., He M., Chen S., Yu F., Li R. // Mater. Lett. 2014. V. 135. P. 35–38. https://doi.org/10.1016/j.matlet.2014.07.133
2. Lesaint C., Glomm W. R., Borg Ø., Eri S., Rytter E., Øye G. // Appl. Catal. A Gen. 2008. V. 351. N 1. P. 131–135. https://doi.org/10.1016/j.apcata.2008.09.008
3. Kim S.-M., Lee Y.-J., Bae J. W., Potdar H.S., Jun K.-W. // Appl. Catal. A Gen. 2008. V. 348. P. 113–120. https://doi.org/10.1016/j.apcata.2008.06.032
4. Enger B.C., Fossan Å.-L., Borg Ø., Rytter E., Holmen A. // J. Catal. 2011. V. 284. P. 9–22. https://doi.org/10.1016/j.jcat.2011.08.008
5. Vincent M.J., Gonzalez R.D. // Appl. Catal. A Gen. 2001. V. 217. P. 143–156. https://doi.org/10.1016/S0926-860X(01)00586-5
6. Ламберов А.А., Халилов И.Ф., Ильясов И.Р., Герасимова А.В., Бикмурзин А.Ш., Шатилов В.М. // Катализ в промышленности. 2013. № 5. С. 29–38.
7. Sifontes Á.B., Gutierrez B., Mónaco A., Yanez A., Díaz Y., Méndez F.J., Llovera L., Cañizales E., Brito J.L. // Biotechnol. Rep. 2014. V. 4. P. 21-29. https://doi.org/10.1016/j.btre.2014.07.001
8. Toledo R., Sánchez B., Porras R., Ramírez F., Larios P., Ramirez M., Rosales M. // Int. J. Chem. React. Eng. 2018. V. 16. N. 11. P. 20170141. https://doi.org/10.1515/ijcre-2017-0141
9. Trueba M., Trasatti S.P. // Eur. J. Inorg. Chem. 2005. V. 17. P. 3393–3403. https://doi.org/10.1002/ejic.200500348
10. Krokidis X., Raybaud P., Gobichon A.E., Rebours B., Euzen P., Toulhoat H. // J. Phys. Chem. B. 2001. V. 105. P. 5121. https://doi.org/10.1021/jp0038310
11. Pigeon Th., Chizallet C., Raybaud P. // J. Catal. 2022. V. 405. P. 140-151. https://doi.org/10.1016/j.jcat.2021.11.011
12. Shancita I., Campbell L. L. Wu Ch.-Ch., Aquino A. J. A., Walck S. D., Tunega D., Pantoya M.L. // J. Phys. Chem. C. 2019. V. 123. P. 15017-15026. https://doi.org/10.1021/acs.jpcc.9b02663
13. He F., Li W., Panga T., Zhou L., Wang Ch., Liu H., Li M., He X. // Ceram. Intern. 2022. V. 48. P. 18035–18047. https://doi.org/10.1016/j.ceramint.2022.02.212
14. Giacobello F., Mollica-Nardo V., Foti C., Celeste Ponterio R., Saija F., Trusso S., Sponer J., Cassone G., Giuffrè O. // Liquids. 2022. V. 2. P. 26-38. https://doi.org/10.3390/liquids2010003
15. Mohammadi M., Khodamorady M., Tahmasbi B., Bahrami K., Ghorbani-Choghamarani A. // J. Ind. Eng. Chem. 2021. V. 97. P. 1–78.
16. Yang Y., Wang N., Pang X., Yasinskiy A., Tan Y., Yu J., Wang Zh., Shi Zh. // J. Mater. Res.&Technol. 2021. V. 15. P. 6640-6646. https://doi.org/10.1016/j.jmrt.2021.11.099
17. Mavrič A.; Fanetti M., Mali G., Valant M. // J. Non-Crystal. Solids. 2018. V. 499. P. 363-370. https://doi.org/10.1016/j.jnoncrysol.2018.07.055
18. Oka Y., Takahashi T., Okada K., Iwai S.-I. // J. Non-Crystal. Solids. 1979. V. 30. N. 3. P. 349. https://doi.org/10.1016/0022-3093(79)90172-8
19. El-Mashri S.M., Jones R.G., Forty A.J. // Philos. Mag. A. 1983. V. 48. P. 665. https://doi.org/10.1080/01418618308236536
20. Campbell T., Kalia R.K., Nakano A., Vashishta P., Ogata S., Rodgers S. // Phys. Rev. Lett. 1999. V. 82. P. 4866. https://doi.org/10.1103/PhysRevLett.82.4866
21. Boretskaya A., Il'yasov I., Lamberov A., Popov A. // Appl. Surf. Sci. 2019. V. 496. N. 1. P. 143635. https://doi.org/10.1016/j.apsusc.2019.143635
22. Boretskaya A., Il'yasov I., Popov A., Lamberov A. // Mater. Today Chem. 2021. V. 19. P. 100387. https://doi.org/10.1016/j.mtchem.2020.100387
23. Bhogeswararao S., Srinivas D. // J. Catal. 2015. V. 327. P. 65-77. https://doi.org/10.1016/j.jcat.2015.04.018
24. Shen J., Cortright R. D., Chen Y., Dumesic J.A. // J. Phys. Chem. 1994. V. 98. P. 8067–8073.
25. Косенко Н.Ф., Филатова Н.В., Липина Е.А. // Изв. вузов. Химия и хим. технология. 2017. Т. 60. Вып. 8. С. 31–36. http:// https://doi.org/10.6060/tcct.2017608.5599
26. Sovar M.-M., Samélor D., Gleizes A.N., Vahlas C. // Surf. Coat. Technol. 2007. V.201. P. 9159–9162. http://doi.org/10.1016/j.surfcoat.2007.04.063
27. Khosravi M.M., Andrus M.B., Burt S.R., Woodfield B.F. // Polyhedron. 2013. V. 62. P. 18–25. https://doi.org/10.1016/j.poly.2013.06.019
28. Wang Zh., Wu W., Bian X., Wu Y. // Green Process Synth. 2016. 5. 305–310.
29. Xu L., Zhang J., Ding J., Liu T., Shi G., Li X., Guo R. // Minerals. 2020. V. 10. N. 1. P. 72. https://doi.org/10.3390/min10010072
30. Карнаухов А.П. Адсорбция. Текстура дисперсных и пористых материалов. Новосибирск: Наука; Сиб. предприятие РАН, 1999. 470 с.
31. Yurdakal S., Garlisi C., Özcan L., Bellardita M., Palmisano G. Heterogeneous Photocatalysis. Ed. by Marci G., Palmisano L. Netherlands: Elsevier, 2019. P. 87. https://doi.org/10.1016/b978-0-444-64015-4
32. Shafi K.V.P.M., Ulman A., Lai J., Yang N.L., Cui M.H. // J. Am. Chem. Soc. 2003. V. 125. N. 14. P. 4010–4011. https://doi.org/10.1021/ja0213625
33. Landry C.C., Pappé N., Mason M.R., Apblett A.W., Tyler A.N., MacInnes A.N., Barron A.R. // J. Mater. Chem. 1995. V. 5. P. 331–341. https://doi.org/10.1039/JM9950500331
Review
For citations:
Boretskaya A.V., Farid M.I., Egorova S.R., Lamberov A.A. The transformation of amorphous aluminum oxide during the catalytic dehydration of aromatic alcohol. Kataliz v promyshlennosti. 2023;23(2):48-57. (In Russ.) https://doi.org/10.18412/1816-0387-2023-2-48-57