Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Estimating the efficiency of catalysts for catalytic pyrolysis of polyethylene

https://doi.org/10.18412/1816-0387-2023-2-58-65

Abstract

The paper is devoted to investigation of the catalytic pyrolysis of high-density polyethylene (PE) in the presence of HBEA, HZSM-5 and HFER catalysts and natural clay. Catalytic pyrolysis of plastic materials is a promising method for treatment of secondary raw materials because it allows converting polymers into chemical compounds, which further serve as a source for chemical industry. Physicochemical parameters of the catalysts were estimated using various methods: IR Fourier spectroscopy, X-ray diffraction analysis, physical adsorption of N2, thermogravimetric analysis, and pyrolytic gas chromatography. Temperature dependences of PE destruction were obtained as well as the dependence of chemical composition of the catalytic pyrolysis products on the catalyst type. Two main factors were shown to determine the efficiency of cracking and the qualitative composition of products – structural and acidic parameters of the catalyst. The presence of Broensted acid sites in zeolites promoted the cracking and aromatization reactions. The possibility of using the clay sample for thermal decomposition of PE was estimated.

About the Authors

V. B. Kharitontsev
Tyumen State University
Russian Federation


E. A. Tissen
Tyumen State University
Russian Federation


E. S. Matveenko
Tyumen State University
Russian Federation


Ya. A. Mikhailov
Tyumen State University
Russian Federation


N. Yu. Tretyakov
Tyumen State University
Russian Federation


A. N. Zagoruiko
Tyumen State University; Boreskov Institute of Catalysis SB RAS, Novosibirsk
Russian Federation


A. V. Elyshev
Tyumen State University
Russian Federation


References

1. Mark L.O., Cendejas M.C., Hermans I. // ChemSusChem. 2020. Vol. 13. P. 5808–5836.

2. Vollmer I., Jenks M.J.F., Roelands M.C.P., White R.J. et al. // Angew. Chem. Int. Ed. 2020. Vol. 59. P. 15402–15423.

3. Kartik S., Balsora H.K., Sharma M., Saptoro A. et al. // Thermal Science and Engineering Progress. 2022. Vol. 32. Article 101316.

4. Yang R.X., Jan K., Chen C., Chen W., Wu K. // ChemSusChem. 2022. Vol. 15, № 11.

5. Santos E., Rijo B. Lemos F., Lemos M.A.N.D.A. // Catal. Today. 2021. Vol. 379. P. 212–221.

6. Sharuddin S.D.A., Abnisa F., Daud W.M.A.W., Aroua M.K. // Energy Convers. Manag. 2016. Vol. 115. P. 308–326.

7. Wong S.L., Ngadi N, Abdullah T.A,T. Inuwa I.M. Current state and future prospects of plastic waste as source of fuel: a review // Renew. Sust. Energy Rev. 2015. Vol.50. P. 1167–1180.

8. Lopez G., Artetxe M., Amutio M., Bilbao J., Olazar M. // Renew. Sust. Energy Rev. 2017. Vol. 73. P. 346–368.

9. Kunwar B., Cheng H.N., Chandrashekaran S.R., Sharma B.K. // Renew. Sust. Energy Rev. 2016. Vol. 54. P. 421–428.

10. Al-Salem S. M., Lettieri P., Baeyens J. // Waste Manage. 2009. Vol. 29. P. 2625–2643.

11. Miandad R., Barakat M.A., Aburiazaiza A.S., Rehan M., Nizami A.S. // Process Saf. Environ. Prot. 2016. Vol. 102. P. 822–838.

12. Coelho A., Costa L., Marques M.M., Fonseca I.M., Lemos M.A.N.D.A, Lemos F. // Applied Catalysis A: Gen. 2012. Vol. 413/414. P. 183–191.

13. Caldeira V.P.S., Santos A.G.D., Oliveira D.S. et al. // J. Therm. Anal. Calorim. 2017. Vol. 130. P. 1939–1951.

14. Ellis L. D., Rorrer N. A., Sullivan K. P., Otto M., McGeehan O.M. et al. // Nat. Catal. 2021. Vol. 4. P. 539–556.

15. Li K., Wang Y., Zhou W. et al. // Chemosphere. 2022. Vol. 299.

16. Miandad R., Barakat M.A., Rehan M., Aburiazaiza A.S., Ismail I.M.I., Nizami A.S. // Waste Manage. 2017. Vol. 69. P. 66–78.

17. Serra A.C.S., Milato J.V., Faillace J.G., Calderari M.R.C.M. // Braz. J. Chem. Eng. Published 04 August 2022.

18. Fadillah G., Fatimah I., Sahroni I., Musawwa M.M. et al. // Catalysts. 2021. Vol. 11. P. 837.

19. Datka J., Turek A.M, Jehng J.M, Wachs I.E. // J. Catal. 1992. Vol. 135, P. 186–199.

20. Meléndez-Ortiz H.I., García-Cerda L.A., Olivares-Maldonado Y. et al. // Ceram. Int. 2012. Vol. 38. P. 6353–6358.

21. Нефедова Т.Н., Ресснер Ф., Селеменев В.Ф. // Сорбционные и хроматографические процессы. 2020. Т. 20, № 1. С. 31–39.

22. Araújo J.R., Waldman W.R., De Paoli M.A. // Polym. Degrad. Stab. 2008. Vol. 93. P. 1770–1775.

23. Costa C.S., Muñoz M., Ribeiro M.R., Silva J.M. // Catal. Today. 2021. Vol. 379. P. 192–204.

24. Tian X., Zeng Z., Liu Z., Dai L., Xu J., Yang X. et al. // J. Clean. Prod. 2022. Vol. 358. Article 131989.

25. Агулло Х., Кумар Н., Беренгуер Д., Кубичка Д., Марцилла А., Гомез А., Салми Т., Мурзин Д.Ю. // Кинетика и катализ. 2007. Т 48, № 4. С. 570–575.

26. He Y., Chen J., Li D., Zhang Q., Liu D., Liu J, Ma X., Wang T. // Energy. 2021. Vol. 223. Article 120046.

27. Ковалева Н.Ю., Раевская Е.Г., Рощин А.В. // Химическая безопасность = Chemical Safety Science. 2020. Т. 4, № 1. С. 48–79.

28. Ren X., Cao J., Zhao X., Yang Z., Wang Y., Chen Q., Zhao M., Wei X. // J. Anal. Appl. Pyrolysis. 2019. Vol. 139. P. 22–30.

29. Inayat A., Inayat A., Schwieger W., Sokolova B., Lestinsky P. // Fuel. 2022. V. 314. Article 123071.

30. He Y., Yan L., Liu Y., Liu Y., Bai Y., Wang J., Li F. // Fuel Process. Technol. 2019. Vol. 188. P. 70–78.

31. Rahimi N., Karimzadeh R. // Applied Catalysis A: Gen. 2011. Vol. 398. P. 1–17.

32. Loder A., Siebenhofer M., Böhm A., Lux S. // Cleaner Engineering and Technology. 2021. Vol. 5. Article 100345.


Review

For citations:


Kharitontsev V.B., Tissen E.A., Matveenko E.S., Mikhailov Ya.A., Tretyakov N.Yu., Zagoruiko A.N., Elyshev A.V. Estimating the efficiency of catalysts for catalytic pyrolysis of polyethylene. Kataliz v promyshlennosti. 2023;23(2):58-65. (In Russ.) https://doi.org/10.18412/1816-0387-2023-2-58-65

Views: 489


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)