

Selective catalytic hydrodebromination of 2,3,4,5-tetrabromothiophene with hydrogen on a palladium catalyst
https://doi.org/10.18412/1816-0387-2023-2-66-72
Abstract
A study on the Pd-catalyzed hydrodebromination of 2,3,4,5-tetrabromothiophene (1) to 3,4-dibromothiophene (2) is reported. The effect of the solvent nature, main agent, temperature and concentration of 1 on the yield of 2 was studied. Optimal conditions of the process were found: a 5 % Pd/Sibunit catalyst constituting 10 % of the substrate weight, a temperature of 80 °С, a pressure of 0.7 MPa, dimethyl formamide with the addition of triethylamine as the main agent in the amount of 2.2 equiv per 1 equiv of the initial substance 1, and the yield of 2 constituting up to 97.5 %. It was shown that the catalyst could be reused with the preservation of the high yield of 2. In comparison with the conventional method of chemical reduction of 1 under the action of zinc in acetic acid, the novel method ensures high output and low wastes.
About the Authors
N. A. AlekseevaRussian Federation
V. V. Eremina
Russian Federation
S. V. Sysolyatin
Russian Federation
I. A. Shchurova
Russian Federation
References
1. Da Cruz R.M.D., Braga R.M., de Andrade H.H.N., Monteiro A.B., Luna I.S., da Cruz R.M.D., Scotti M.T., Mendonça-Junior F.J.B., de Almeida R.N. // Heliyon. 2020. Vol. 6, № 11, e05520. DOI: 10.1016/j.heliyon.2020.e05520.
2. Wang Y., Hu X., Huang H., Jin Z., Gao J., Guo Y., Zhong Y., Li Z., Zong X., Wang K., Zhang L., Liu Z. // Eur. J. Med. Chem. 2022. Vol. 237. Article 114413. DOI: 10.1016/j.ejmech.2022.114413.
3. Патент РФ 2565766; опубл. 2015.
4. Aguero S., Megy S., Eremina V.V., Kalashnikov A.I., Krylova S.G., Kulagina D.A., Lopatina K.A., Fournier M., Povetyeva T.N., Vorozhtsov A.B., Sysolyatin S.V., Zhdanov V.V., Terreux R. // ACS Omega. 2021. Vol. 6, № 23. P. 15400–15411. DOI: 10.1021/acsomega.1c01786.
5. Nielsen C.B., Bjørnholm T. // Org. Lett. 2004. Vol. 6, № 19. P. 3381–3384. DOI: 10.1021/ol048659n.
6. Honciuc A., Metzger R.M., Gong A., Spangler, C.W. // J. Am. Chem. Soc. 2007. Vol. 129, № 26. P. 8310–8319. DOI: 10.1021/ja068729g.
7. Inaoka S., Collard D.M. // J. Mater. Chem. 1999. Vol. 9, № 8. P. 1719–1726. DOI: 10.1039/a900075e.
8. Ertas E., Ozturk T. // Tetrahedron Lett. 2004. Vol. 45, № 17. P. 3405–3407. DOI: 10.1016/j.tetlet.2004.03.023.
9. Araki K., Endo H., Masuda G., Ogawa T. // Chem. Eur. J. 2004. Vol. 10, № 13. P. 3331–3340. DOI: 10.1002/chem.200400063.
10. Velauthamurty K., Higgins S.J., Rajapakse R.M.G., Bandara H.M.N., Shimomura M. // Electrochim. Acta. 2010. Vol. 56, № 1. P. 326–332. DOI: 10.1016/j.electacta.2010.08.075.
11. Xue Y.-J., Cao F.-Y., Huang P.-K., Su Y.-C., Cheng Y.-J. // J. Mater. Chem A. 2020. Vol. 8, № 10. P. 5315–5322. DOI: 10.1039/c9ta14040a.
12. Arsenyan P., Paegle E., Belyakov S. // Tetrahedron Lett. 2010. Vol. 51, № 1. P. 205–208. DOI: 10.1016/j.tetlet.2009.10.133.
13. Sadekar A.G., Mohite D., Mulik S., Chandrasekaran N., Sotiriou-Leventis C., Leventis N. // J. Mater. Chem. 2012. Vol. 22, № 1. P. 100–108. DOI: 10.1039/c1jm12563j.
Review
For citations:
Alekseeva N.A., Eremina V.V., Sysolyatin S.V., Shchurova I.A. Selective catalytic hydrodebromination of 2,3,4,5-tetrabromothiophene with hydrogen on a palladium catalyst. Kataliz v promyshlennosti. 2023;23(2):66-72. (In Russ.) https://doi.org/10.18412/1816-0387-2023-2-66-72