Conversion of methane on catalysts, obtained by self-propagating high-temperature synthesis
Abstract
The block-metal catalysts for the selective oxidation of methane were prepared by self-propagating high-temperature synthesis (SHS) using powder NiO, ZrO2, MgO, Al, Ni, and others. Catalytic tests of block samples were conducted in a flow reactor in a mixture of methane (29,6 %vol.) and air at 800 °C. It is shown that SH catalysts reach the level of platinum and platinum-rhodium
catalysts in yield of a synthesis-gas (the total concentration of CO + H2), and in the case of Ni52,9ZrO29,5 composition the catalyst samples exceed platinum and platinum-rhodium catalysts. The experimental autothermal synthesis-gas generator with capacity of 30 m3/h is designed using a catalyst composition Ni52,9ZrO29,5. The process of synthesis-gas production by the carbon dioxide reforming of methane was carried out on powder of SHS catalysts Ni3Al, modified by Pt. The samples testing behavior were studied in a flow reactor with a fixed catalyst bed volume is 1 cm3, 600–1000 micron grain size at temperatures of 600–900 °C, flow rate (СН4 : СО2 : Не = 20 : 20 : 60 %vol.) 100 cm3/min. А high activity and stability of the developed catalysts in the conversion of natural gas to synthesis-gas are shown in a high-temperature oxidation-reduction environment.
That work is the first step on the way of producing dimethyl ether, which can be a real competitor to diesel.
About the Authors
Yu. M. MaksimovRussian Federation
A. I. Kirdyashkin
Russian Federation
L. A. Arkatova
Russian Federation
References
1. Григорян Э.И., Мержанов А.Г. Катализаторы XXI века // Наука — производству. 1998. № 3(5). С. 30—41.
2. Maksimov Yu.M., Kirdyashkin A.I., Baev V.K., Gushin A.N. // Advances in Science and Technology. 2010.
3. Vol. 63. P. 297.
4. Пат. 2349380 РФ. Катализатор и способ получения синтез-газа углекислотной конверсией метана /
5. Ю.С. Найбороденко, Н.Г. Касацкий, В.Д. Китлер, Л.А. Аркатова и др. 2009.
6. Аркатова Л.А. // Журнал физической химии. 2010. Т. 84. № 4. С. 647.
7. Арутюнов В.С., Крылов О.В. Окислительные превращения метана. М.: Наука, 1998.
8. Ferreira-Aparicio P., Marquez-Alvarez C., Rodriguez-Ramos I., Schuurman Y., Guerrero-Ruiz A., Mirodatos C. // J. Catal 184 (1) (1999) 202.
9. Zhang J., Wang H., Dalai A.K. // J. Catal. 249 (2007) 300.
10. Semelsberger T.A., Borup R.L., Greene H.L. // J. Power Sources. 156 (2006). 497.
11. Bradford M., Vannice M. // Catal. Rev. Sci. Eng. 41 (1999) 1.
12. Wang J.C.B., Hsiao S.Z., Huang T.J. // Appl. Catal. A 246 (2) (2003) 197.
13. Sazonova N.N., Sadykov V.A., Bobin A.S., Pokrovskaya S.A., Gubanova E. // React. Kinet. Catal. Lett. 98 (1)
14. (2009) 35.
15. Rostrub-Nielsen J.R., Bak-Hansen J.H. // J. Catal. 144 (1993) 38.
16. Wang H.Y., Ruckenstein E. // Appl. Catal. A 204 (2000) 143.
17. Пористая конструкционная керамика / Под ред. Красулина. М.: Металлургия, 1980.
18. Пат. 255221 СССР. Способ получения тугоплавких неорганических соединений / А.Г. Мержанов,
19. В.М. Шкиро, И.П. Боровинская. 1967.
20. Кирдяшкин A.И., Юсупов Р.А., Максимов Ю.М., Китлер В.Д. // Физика горения и взрыва. 2002. Т. 38.
21. № 5. С. 85.
22. Arkatova L.A. // Catalysis Today. 2010. Vol. 157. P. 170.
23. Brown I.G. // Review of Scientific Instruments. 1994. Vol. 65. P. 3061.
Review
For citations:
Maksimov Yu.M., Kirdyashkin A.I., Arkatova L.A. Conversion of methane on catalysts, obtained by self-propagating high-temperature synthesis. Kataliz v promyshlennosti. 2013;(2):45-51. (In Russ.)