Preview

Kataliz v promyshlennosti

Advanced search

Conversion of methane on catalysts, obtained by self-propagating high-temperature synthesis

Abstract

The block-metal catalysts for the selective oxidation of methane were prepared by self-propagating high-temperature synthesis (SHS) using powder NiO, ZrO2, MgO, Al, Ni, and others. Catalytic tests of block samples were conducted in a flow reactor in a mixture of methane (29,6 %vol.) and air at 800 °C. It is shown that SH  catalysts reach the level of platinum and platinum-rhodium
catalysts in yield of a synthesis-gas (the total concentration of CO + H2), and in the case of Ni52,9ZrO29,5 composition the catalyst samples exceed platinum and platinum-rhodium catalysts. The experimental autothermal synthesis-gas generator with capacity of 30 m3/h is designed using a catalyst composition Ni52,9ZrO29,5. The process of synthesis-gas production by the carbon dioxide reforming of methane was carried out on powder of SHS catalysts Ni3Al, modified by Pt. The samples testing behavior were studied in a flow reactor with a fixed catalyst bed volume is 1 cm3, 600–1000 micron grain size at temperatures of 600–900 °C, flow rate (СН4 : СО2 : Не = 20 : 20 : 60 %vol.) 100 cm3/min. А high activity and stability of the developed catalysts in the conversion of natural gas to synthesis-gas are shown in a high-temperature oxidation-reduction environment.
That work is the first step on the way of producing dimethyl ether, which can be a real competitor to diesel.

About the Authors

Yu. M. Maksimov
Отдел структурной макрокинетики Томского научного центра СО РАН
Russian Federation


A. I. Kirdyashkin
Отдел структурной макрокинетики Томского научного центра СО РАН
Russian Federation


L. A. Arkatova
Томский государственный университет
Russian Federation


References

1. Григорян Э.И., Мержанов А.Г. Катализаторы XXI века // Наука — производству. 1998. № 3(5). С. 30—41.

2. Maksimov Yu.M., Kirdyashkin A.I., Baev V.K., Gushin A.N. // Advances in Science and Technology. 2010.

3. Vol. 63. P. 297.

4. Пат. 2349380 РФ. Катализатор и способ получения синтез-газа углекислотной конверсией метана /

5. Ю.С. Найбороденко, Н.Г. Касацкий, В.Д. Китлер, Л.А. Аркатова и др. 2009.

6. Аркатова Л.А. // Журнал физической химии. 2010. Т. 84. № 4. С. 647.

7. Арутюнов В.С., Крылов О.В. Окислительные превращения метана. М.: Наука, 1998.

8. Ferreira-Aparicio P., Marquez-Alvarez C., Rodriguez-Ramos I., Schuurman Y., Guerrero-Ruiz A., Mirodatos C. // J. Catal 184 (1) (1999) 202.

9. Zhang J., Wang H., Dalai A.K. // J. Catal. 249 (2007) 300.

10. Semelsberger T.A., Borup R.L., Greene H.L. // J. Power Sources. 156 (2006). 497.

11. Bradford M., Vannice M. // Catal. Rev. Sci. Eng. 41 (1999) 1.

12. Wang J.C.B., Hsiao S.Z., Huang T.J. // Appl. Catal. A 246 (2) (2003) 197.

13. Sazonova N.N., Sadykov V.A., Bobin A.S., Pokrovskaya S.A., Gubanova E. // React. Kinet. Catal. Lett. 98 (1)

14. (2009) 35.

15. Rostrub-Nielsen J.R., Bak-Hansen J.H. // J. Catal. 144 (1993) 38.

16. Wang H.Y., Ruckenstein E. // Appl. Catal. A 204 (2000) 143.

17. Пористая конструкционная керамика / Под ред. Красулина. М.: Металлургия, 1980.

18. Пат. 255221 СССР. Способ получения тугоплавких неорганических соединений / А.Г. Мержанов,

19. В.М. Шкиро, И.П. Боровинская. 1967.

20. Кирдяшкин A.И., Юсупов Р.А., Максимов Ю.М., Китлер В.Д. // Физика горения и взрыва. 2002. Т. 38.

21. № 5. С. 85.

22. Arkatova L.A. // Catalysis Today. 2010. Vol. 157. P. 170.

23. Brown I.G. // Review of Scientific Instruments. 1994. Vol. 65. P. 3061.


Review

For citations:


Maksimov Yu.M., Kirdyashkin A.I., Arkatova L.A. Conversion of methane on catalysts, obtained by self-propagating high-temperature synthesis. Kataliz v promyshlennosti. 2013;(2):45-51. (In Russ.)

Views: 2537


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)