Preview

Катализ в промышленности

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Доступ платный или только для Подписчиков

Катализ в переработке биомассы

Аннотация

В последнее время биомасса рассматривается как сырье для производства топлива и химикатов. В настоящем обзоре обсуждаются причины повышенного интереса к биомассе (в основном, лигноцеллюлозной). Проанализированы основные технологии переработки биомассы: газификация, пиролиз и деполимеризация на основе гидролиза. Получаемые в последнем случае сахара можно перерабатывать в топливо или ключевые интермедиаты химической промышленности, что также обсуждается в обзоре. Лигноцеллюлозная биомасса содержит важные экстрагенты – жирные кислоты и терпены, поэтому в обзоре приведены каталитические реакции этих веществ для синтеза топлива и химикатов. Некоторые типичные реакции переработки биомассы: окисление, гидрирование, крекинг и др. близки концептуально к процессам, широко известным в нефтепереработке и химической промышленности. Однако существуют определенные особенности вследствие, например, большого количества функциональных (в частности, гидроксильных) групп, в связи с чем для переработки компонентов биомассы требуются дегидратация, альдольная конденсация, кетанизация, декарбоксилирование и т.д. В обзоре рассматриваются основы подходов к подбору катализаторов для этих реакций.

Об авторах

Д. Ю. Мурзин
Университет Або Академи, Турку
Финляндия


И. Л. Симакова
Институт катализа им. Г.К. Борескова, Новосибирск
Россия


Список литературы

1. Lange J.P. Lignocellulose conversion: an introduction to chemistry, process and economics / Catalysis for Renewables. (Ed. Centi G, van Santen R.). Weinheim: Wiley-VCH, 2007.

2. Chheda J.N., Huber G.W., Dumesic J.A. Liquid phase caralytic processing if biomass- derived oxygenated hydrocarbons to fuels and chemicals // Angew. Chem. Int. Ed. 2007. Vol. 46. P. 7164.

3. Corma А., Iborra S., Velty A. Chemical routes for the transformation of biomass into chemicals, Chem. Rev. 2007. Vol. 10. Р. 2411.

4. Rubin E.M. Genomics of cellulosic biofuels, Nature. 2008 Vol. 454. Р. 841.

5. Kumar Guha S., Kobayashi H., Fukuoka A. Conversion of cellulose to sugars / Thermochemical Conversion of Biomass to Liquid Fuels and Chemicals, RSC Energy and Environmental Series N1 (Ed. M. Crocker), 2010. P. 345.

6. Akien G., Qi L., Horvath I.T. Conversion of carbohydrates to liquid fuels / Thermochemical Conversion of Biomass to Liquid Fuels and Chemicals, RSC Energy and Environmental Series N1 (Ed. M. Crocker), 2010. Р. 365.

7. Murzin D.Yu., Mäki-Arvela P. Catalytic deoxygenation of fatty acids and their derivatives for the production of rnewable diesel / Thermochemical Conversion of Biomass to Liquid Fuels and Chemicals RSC Energy and Environmental Series N1 (Ed. M. Crocker), 2010. Р. 496.

8. Mäki-Arvela P., Holmbom B., Salmi T., Yu D. Murzin, Recent progress in synthesis of fine and specialty chemicals from wood and other biomass by heterogeneous catalytic processes // Catalysis Reviews Science and Engineering. 2007. Vol. 49. Р. 197.

9. Rinaldi R., Schueth F. Acid hydrolysis of cellulose as the entry point into biorefinery schemes // ChemSusChem. 2009. Vol. 2. Р. 1096.

10. Bozell J.J., Petersen G.R. Technology development in the production of biobased products from biorefinery carbohydrates – the US Department of Energy’s top 10 revisited // Green Chem. 2010. Vol. 12. Р. 539.

11. Martin Alonso D., Bond J.Q. KJ.A. Dumesic, Сatalytic conversion of biomass to biofuels // Green Chem. 2010. Vol. 12. Р. 1493.

12. Rinaldi R., Schueth F. Desigjn of solid catalysts for the conversion of biomass // Energy Environ. Sci. 2009. Vol. 2. Р. 610.

13. Bekkum H. van, Maat L. Fine chemicals from renewables // Catalysis for Renewables. G. Centi, R. van Santen. Weinheim: Wiley-VCH, 2007. Р. 101.

14. Claus P., Vogel H. The role of chemocatalysis in the establishment of the technology platform “renewable resources” // Chem. Eng. Technol. 2008. Vol. 31. Р. 678.

15. Fernando S., Adhikari S., Chandrapal C., Murali N. Biorefineries: Current status, challenges, and future direction, Energy Fuels. 2006. Vol. 20. Р. 1727.

16. Lin Yu.-C., Huber G.W. The critical role of heterogeneous catalysis in lignocellulosic biomass conversion // Energy Environ. Sci. 2009. Vol. 2. Р. 68.

17. Clark J.H., Deswarte F.I., Farmer T.J. The integration of green chemistry into future biorefineries // Biofuels, Bioproducts, Biorefining. 2008. Vol. 3. Р. 72.

18. Petrus L., A.Nordermeer M. Biomass to biofuels, a chemical perspective // Green Chem. 2006. Vol. 8. Р. 861.

19. Simonetti D.A., Dumesic J.A. Catalytic production of liquid fuels from biomass-derived oxygenated hydrocarbons: catalytic coupling at multiple length scales // Catalysis Reviews. 2009. Vol. 51. Р. 441.

20. Huber G.W., Iborra S., Corma A. Synthesis of transportation fuels from biomass: chemistry, catalysts and engineering // Chem Rev. 2006. Vol. 106. Р. 4044.

21. Bell D.A., Towler B.F., Fan M. Substitute natural gas and Fischer Tropsch synthesis // Coal Gasification and Its Applications. 2011. Р. 373.

22. http://www.choren.com/en/carbo-v/carbo-v/, 6.02.2011.

23. Aho A., Kumar N., Eränen K. Catalytic pyrolysis of biomass in a fluidized bed reactor: influence of acidity of H-beta zeolite // IChemE, part B, Process Safety Environ. Protection. 2007. Vol. 85. Р. 47.

24. Aho A., Kumar N., Eränen K. Catalytic pyrolysis of woody biomass in a fluidized bed reactor: influence of the zeolite structure // Fuel. 2008. Vol. 87. Р. 2493.

25. Aho A., Kumar N., Eränen K. Catalytic upgrading of woody biomass derived pyrolysis vapours over iron modified zeolites in a dual –fluidized bed reactor // Fuel. 2010. Vol. 89. Р. 1992.

26. Basagiannis A.C., Verykios X.E. Steam reforming of the aqueous fraction of bio-oil over structured Ru/MgO/Al2O3 catalysts // Catalysis Today. 2007. Vol. 127. Р. 256.

27. Kusema B.T., Xu C., Mäki-Arvela P. et al. Kinetics of acid hydrolysis of arabinogalactans // Int. J. Chem. React. Eng. 2010. № 8, A44: 1.

28. Kusema B.T., Hilpmann G., Tönnov T. Kinetics of acid hydrolysis of arabinogalactans // Catal. Letters. 2011.

29. Sjöström E. Wood Chemistry, Fundamental and Applications, 2-nd ed. London. Acad. Press, 1993.

30. Bobleter O. Polysaccharides, (Ed. S. Dumitriu), Marcel Dekker, New York, 2005. Р. 893.

31. Wyman C.E., Decker S.R. Himmel M.E. L. Viikari in Polysaccharides, 2-nd ed., (Ed. S. Dumitriu), Marcel Dekker, New York, 2005. Р. 995.

32. Барышева Г.С. Гидролитическое гидрирование целлюлозы. 1959. Т. 128. С. 839.

33. Васютина Н.А., Чепиго С.В., Барышева Г.С. Гидролитическое гидрирование гемицеллюлозы // Сб. науч. тр. ГосНИИ гидролизный и сульфитно-спиртовой промышленности. 1964. № 12. С. 80.

34. Васютина Н.А., Баландин А.А., Чепиго С.В., Барышева Г.С. Каталитическое гидрирование дерева и других природных материалов // Российский химический биллютень. 1960. № 9. С. 1419.

35. Fukuoka A., Dhepe P.L. Catalytic conversion of cellulose into sugar alcohols // Angew. Chem. Int. Ed. 2006. Vol. 45. Р. 5161.

36. Luo C., Wang S., Liu H. Cellulose conversion into polyols catalyzed by reversibly formed acids and supported ruthenium clusters in hot water // Angew. Chem. Int. Ed. 2007. Vol. 46. Р. 7636.

37. Yan N., Zhao C., Luo C. One-step conversion of cellobiose to C6-alcohols using a ruthenium nanocluster catalyst // J. Am. Chem. Soc. 2006. Vol. 128. P. 8714.

38. Ji N., Zhang T., Zheng M. Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts // Angew. Chem. Int. Ed. 2008. Vol. 47. P. 8510.

39. Jolle V., Chambon F., Rataboul F., Cabiac A., Pinel C., Guillon E., Essaem N. Non-catalyzed and Pt/Al2O3-catalyzed hydrothermal cellulose dissolution-conversion: influence of the reaction parameters and analysis of the unreacted cellulose // Green Chem. 2009. Vol. 11. Р. 2052.

40. Deng W., Tan X., Fang W., Zhang Q., Wang Y. Conversion of cellulose into sorbitol over carbon nanotubes- supported ruthenium catalyst // Catal. Lett. 2009. Vol. 133. Р. 167.

41. Zhang Y., Wang A., Zhang T. A new 3D mesoporous carbon replicated from commercial silica as a catalyst support for direct conversion of cellulose into ethylene glycol // Chem. Commun. 2010. Vol. 46. Р. 862.

42. Zheng M.-Y., Wang A.-Q., Ji N., Pang J.F., Wang X.-D., Zhang T. Transition metal–tungsten bimetallic catalysts for the conversion of cellulose into ethylene glycol // ChemSusChem. 2010. Vol. 3. Р. 63.

43. Käldström M., Kumar N., Murzin D.Yu. Valorization of cellulose over metal supported mesoporous materials // Catalysis Today (в печати).

44. Третьяков В.Ф., Макарфи Ю.И., Талышинский Р.М., Французова Н.А., Третьяков К.В. Каталитические превращения биоэтанола. Обзор // Вестник МИТХТ. 2010. № 5. С. 5.

45. Zverlov V.V., Berezina O., Velikodvorskaya G.A., Schwarz W.H. Bacterial acetone and butanol production by industrial fermentation in the Soviet Union: use of hydrolyzed agricultural waste for biorefinery // Appl. Microbiol. Biotechnol. 2006. Vol. 71. Р. 587.

46. Волкова Г.С. Исследование процессов ферментации отходов переработки сельскохозяйственного сырья с помощью кислотообразующих бактерий для получения молочной кислоты и ее производных: Автореф. дис. … канд. техн. наук. Москва, 2002.

47. Sifontes Herrera V.A., Oladele O., Kordas K., Eränen K., Mikkola J.-P., Murzin D.Yu., Salmi T. Sugar hydrogenation over a Ru/C catalyst // Journal of Chemical Technology and Biotechnology (в печати).

48. Murzina E.V., Tokarev A.V., Kordas K., Karhu H., Mikkola J.-P., Murzin D.Yu. D-Lactose oxidation over gold catalysts // Catalysis Today. 2008. Vol. 131. Р. 385.

49. Smolentseva E., Kusema B.T., Beloshapkin S., Estrada M., Vargas E., Murzin D.Yu., Castillon F., Fuentes S., Simakov A. Selective oxidation of arabinose to arabinonic acid over Pd–Au catalysts supported on alumina and ceria // Applied Catalysis A. General. 2011. Vol. 392. Р. 69.

50. Simakova O.A., Kusema B., Campo B., Leino A.-R., Kordas K., Pitchon V., Mäki-Arvela P., Murzin D. Yu. Structure sensitivity in L-arabinose oxidation over Au/Al2O3 // Journal of Physical Chemistry C. 2011. Vol. 115. Р. 1036.

51. Parmon V.N. Thermodynamic analysis of the effect of the nanoparticle size of the active component on the adsorption equilibrium and the rate of heterogeneous catalytic processes // Doklady Physical Chemistry. 2007. Vol. 413. Р. 42.

52. Murzin D.Yu. Thermodynamic analysis of nanoparticle size effect on catalytic kinetics // Chemical Engineering Science, 2009, Vol.64, 1046.

53. Murzin D.Yu. Size dependent heterogeneous catalytic kinetics // Journal of Molecular Catalysis . A. Chemical. 2010. Vol. 315. Р. 226.

54. Huber G.W., Cortright R.D., Dumesic J.A. Renewable alkanes by aqueous-phase reforming of biomass derived oxygenates // Angew. Chem. Int. Ed. 2004. Vol. 43. Р. 1549.

55. Cortright R.D., Davda R.R., Dumesic J.A. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water // Nature. 2002. Vol. 418. Р. 964.

56. Huber G.W., Shabaker J.W., Dumesic J.A. Raney Ni-Sn catalyst for H2 from biomass-derived hydrocarbons // Science. 2003. Vol. 300. Р. 2075.

57. Kirilin A.V., Tokarev A.V., Murzina E.V., Kustov L.M., Mikkola J.-P., Murzin D.Yu. Reaction products and intermediates and their transformation in the aqueous phase reforming of sorbitol // ChemSusChem. 2010. Vol. 3. Р. 708.

58. Metzger J.O. Production of Liquid Hydrocarbons from Biomass // Angew. Chem. Int. Ed. 2006. Vol. 45. Р. 696.

59. Heeres H., Handana R., Chunai D., Rasrendra C.B., Girisuta B., Heeres H.J. Combined dehydration/(transfer)-hydrogenation of C6-sugars (D-glucose and D-fructose) to -valerolactone using ruthenium catalysts // Green Chem. 2009. Vol. 11. Р. 1247.

60. Manzer L.E. Catalytic synthesis of -methylene-γ-valerolactone: a biomass-derived acrylic monomer // Applied Catalysis A. General. 2004. Vol. 272. Р. 249.

61. Renz M. Ketonization of carboxylic acids by decarboxylation: mechanism and scope // Eur. J. Org. Chem. 2005. Р. 979.

62. Bond J.Q., Alonso D.M., Wang D., West R.M., Dumesic J.A. Integrated catalytic conversion of -valerolactone to liquid alkenes for transportation fuels // Science. 2010. Vol. 327. Р. 1110.

63. Villegas J.I., Kumar N., Heikkilä T., Lehto V.-P., Salmi T., Murzin D.Yu. Dimerization of 1-butene over beta zeolite // Topics in Catalysis. 2007. Vol. 45. Р. 187.

64. Рахимов А.И. Химия и технология органических перекисных соединений. М.: Химия, 1979.

65. Cameron D.C., Altaras N.E., Hoffman M.L., Shaw A.J. Metabolic engineering of propanediol pathways // Biotechnol. Progr. 1998. Vol. 1. Р. 116.

66. Altaras N.E., Cameron D.C. Enhanced production of (R)-1,2-propanediol by metabolically engineered Escherichia coli // Biotechnol. Prog. 2000. Vol. 16. Р. 940.

67. Pat. 3030429 (USА). Process for the direct hydrogenation splitting of saccharose to glycerol and glycols / F. Conradin, G. Bertossa, J. Giesen. 1962.

68. Pat. 4404411(USА). Hydrogenolysis of polyols to ethylene glycol in nonaqueous solvents / M. S Tanikella. 1983.

69. Pat. 5600028 (USА). Method for producing lower polyhydric alcohols and a new ruthenium-based catalyst used in this method / G. Gubitosa, B. Casale. 1997.

70. Pat. 6479713 (USА). Hydrogenolysis of 5-carbon sugars, sugar alcohols, and other methods and compositions for reactions involving hydrogen / T.A. Werpy, J.G. Frye, A.H. Zacher, D.J. Miller. 2002.

71. Litchfield J.H. Advances in microbiological production of lactic acid // Adv. Appl. Microbiol. 1996. Vol. 42. Р. 45.

72. Varadarajan S., Miller D.J. Catalytic udgrading of fermentation-derived organic acids // Biotechnol. Prog. 1999. Vol. 15. Р. 845.

73. Cortright R.D., Sanchez-Castillo M., Dumesic J.A. Conversion of biomass to 1,2-propanediol by selective catalytic hydrogenation of lactic acid over silica-supported copper // Appl. Catal. B: Environmental. 2002. Vol. 39. Р. 353.

74. Pat. 2859240 (USА). Production of acrylates by catalytic dehydration of lactic acid and alkyl lactates / R.E. Holmen. 1958.

75. Pat. 4729978 (USА). Catalyst for dehydration of lactic acid to acrylic acid / R.A. Sawicki. 1988.

76. Pat. 4786756 (USА). Catalytic conversion of lactic acid and ammonium lactate to acrylic acid, C. Paparizos , S.R. Dolhyj, W.G. Shaw. 1988.

77. Mok W.S., Antal M.J. // J. Maitland Formation of acrylic acid from lactic acid in supercritical water // J. Org. Chem. 1989. Vol. 54. Р. 4596.

78. Gunter G.C., Miller D.J., Jackson J.E. Formation of 2,3-pentanedione from lactic acid over supported phosphate catalysts // J. Catal. 1994. Vol. 148. Р. 252.

79. Pat. 5731471(USА). Process for the preparation of 2,3-pentanedione / D.J. Miller, J.E. Jackson, R.H. Langford, G.C. Gunter, M.S. Tam, P.B. Kokitkar. 1998.

80. Wadley D.C., Kokitkar P.B., Jackson J.E., Miller D.J. Lactic acid conversion to 2,3-pentanedione and acrylic acid over silica-supported sodium nitrate: Reaction optimization and identification of sodium lactate as the active catalyst // J. Catal. 1997. Vol. 165. Р. 62.

81. Tam M.S., Craciun R., Miller D.J., Jackson J.E. Reaction and kinetic studies of lactic acid conversion over alkali-metal salts // Ind. Eng. Chem. Res. 1998. Vol. 37. Р. 2360.

82. Lunt J. Large-scale production, properties and commercial applications of polylactic acid polymers // Polym. Degrad. Stab. 1998. Vol. 59. Р. 145.

83. Tullo A.H. Growing plastics // Chem. Eng. News. 2008. Vol. 86. Р. 21.

84. Broadbent H.S., Campbell G.C., Bartley W.J., Johnson J.H. Rhenium and its compounds as hydrogenation catalysts. III. Rhenium heptoxide // J. Org. Chem. 1959. Vol. 24. Р. 1847.

85. Pat. 5731479 (USА). Process for the preparation of optically active alcohols / S. Antons. 1998.

86. Pat. 00/30744 (WO). Condensed phase catalytic hydrogenation of lactic acid to propylene glycol / Z. Zhang, D.J. Miller. 2000.

87. Bowden E., Adkins H. Hydrogenation of optically active compounds over nickel and copper-chromium oxide // J. Am. Chem. Soc. 1934. Vol. 56. Р. 689.

88. Adkins H., Billica H.R. Effect of ratio of catalyst and other factors upon the rate of hydrogenation // J. Am. Chem. Soc. 1948. Vol. 70. Р. 3118.

89. Adkins H., Billica H.R. The hydrogenation of esters to alcohols at 25-150° // J. Am. Chem. Soc. 1948. Vol. 70. Р. 3121.

90. Pat. 5731479 (USА). Process for the preparation of optically active alcohols / S. Antons. 1998.

91. Симонов М.Н., Симакова И.Л., Минюкова Т.П., Хасин А.А. Гидрирование молочной кислоты на восстановленных медьсодержащих катализаторах // Изв. РАН. Сер. химическая. 2009. № 6. С. 1086.

92. Simonov M.N., Simakova I.L., Parmon V.N. Hydrogenation of lactic acid to propylene glycol over copper-containing catalysts // React. Kinet. Catal. Lett. 2009. Vol. 97. Р. 157.

93. Pat. 2009103682 (WO). The catalyst and catalytic reduction of hydroxycarboxylic acid to glycols / I.L. Simakova, M.N. Simonov, M.P. Demeshkina, T.P. Minyukova, A.A. Khassin, V.N. Parmon. 2009.

94. Simonov M., Zaikin P., Simakova I. Green continuous-flow method of alkyl lactate hydrogenolysis over silica-supported copper // ChemSusChem. DOI: 10.1002/cssc.201100028, 2011 (в печати).

95. Zakzeski J., Bruijnincx P.C.A., Jongerius A.L., Weckhuysen B.M. Catalytic valorization of lignin // Chemical Reviews. 2010. Vol. 110. Р. 3552.

96. Huber G.W., Corma A. Synergies between bio- and oil refineries for the production of fuels from biomass // Angew. Chem. Int. Ed. 2007. Vol. 46. Р. 2.

97. Пен Р., Пен В. Кинетика делигнификации древесины, Красноярск: Кн. изд-во, 1998.

98. Grenman H., Wärnå J., Mikkola J.-P., Sifontes V., Fardim P., Murzin D.Yu., Salmi T. Modelling the influence of wood anisotropy and internal diffusion on delignification kinetics // Industrial and Engineering Chemistry Research. 2010. Vol. 49. Р. 9703.

99. Fukuda H., Kondo A., Noda H. Biodiesel fuel production by transesterification of oils // Journal Bioscience and Bioengineering. 2001. Vol. 91. Р. 405.

100. Сноре М., Мяки-Арвела П., Симакова И.Л., Мюллюойа Ю., Мурзин Д.Ю. Обзор каталитических методов производства нового поколения биодизеля из природных масел и жиров // Сверхкритические флюиды. 2009. № 4. С. 3.

101. Lestari S., Mäki-Arvela P., Beltramini J., Max Lu G.Q., Murzin D.Yu. Transforming triglycerides and fatty acids to biofuels // ChemSusChem. 2009. Vol. 2. Р. 1109.

102. Fangrui M., Milford A.H. Biodiesel production: a review // Bioresource Technology. 1999. Vol. 70. Р. 1.

103. Gerpen J.V. Biodiesel processing and production // Fuel Processing Technology. 2005. Vol. 86. Р. 1097.

104. Barnwal B.K., Sharma M.P. Prospects of biodiesel production from vegetable oils in India // Renewable Sustainable Energy reviews. 2005. Vol. 9. Р. 363.

105. Demirbas A. Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues // Progress in Energy and Combustion Science. 2005. Vol. 31. Р. 466.

106. Demirbas A. Progress and recent trends in biodiesel fuels // Energy Conversion and Management. 2009. Vol. 50. Р. 14.

107. Suppes G.J., Dasari M.A., Doskocil E.J., Mankidy P.J., Goff M.J. Transesterification of soybean oil with zeolite and metal catalysts // Applied Catalysis A: General. 2004. Vol. 257. Р. 213.

108. Xie W., Peng H., Chen L. Transesterification of soybean oil catalyzed by potassium loaded on alumina as a solid-base catalyst // Applied Catalysis A: General. 2006. Vol. 300. Р. 67.

109. Di Serio M., Tesser R., Pengmei L., Santacesaria E. Heterogeneous catalysts for biodiesel production // Energy Fuels. 2008. Vol. 22. Р. 207.

110. Kubickova I., Snåre M., Eränen K., Mäki-Arvela P., Murzin D.Yu. Hydrocarbons for diesel fuel via decarboxylation of vegetable oils // Catalysis Today. 2005. Vol. 106. Р. 197.

111. Snåre M., Kubickova I., Mäki-Arvela P., Eränen K., Murzin D.Yu. Continuous deoxygenation of ethyl stearate – a model reaction for production of diesel fuel hydrocarbons // Catalysis of Organic Reactions. 2006. Р. 415.

112. Snåre M., Murzin D.Yu. Reply to comment on “Heterogeneous catalytic deoxygenation of stearic acid for production of biodiesel” // Industrial & Engineering Chemistry Research. 2006. Vol. 45. Р. 6875.

113. Snåre M., Kubickova I., Mäki-Arvela P., Eränen K., Murzin D.Yu. Heterogeneous catalytic deoxygenation of stearic acid for production of biodiesel // Industrial & Engineering Chemistry Research. 2006. Vol. 45. Р. 5708.

114. Mäki-Arvela P., Kubickova I., Eränen K., Snåre M., Murzin D.Yu. Catalytic decarboxylation of fatty acids and their derivatives // Energy and Fuels. 2007. Vol. 21. Р. 30.

115. Snåre M., Kubickova I., Mäki-Arvela P., Eränen K., Wärnå J., Murzin D.Yu. Production of diesel fuel from renewable feeds: kinetics of ethyl stearate decarboxylation // Chemical Engineering Journal. 2007. Vol. 134. Р. 29.

116. Mäki-Arvela P., Snåre M., Eränen K., Myllyoja J., Murzin D.Yu. Continuous decarboxylation of lauric acid over Pd/C catalyst // Fuel. 2008. Vol. 87. Р. 3543.

117. Snåre M., Kubickova I., Mäki-Arvela P., Chichova D., Eränen K., Murzin D.Yu. Catalytic deoxygenation of unsaturated renewable feedstocks for production of diesel fuel hydrocarbons // Fuel. 2008. Vol. 87. Р. 933.

118. Snåre M., Mäki-Arvela P., Simakova I.L., Myllyoja J., Murzin D.Yu. Overview of catalytic methods for production of next generation biodiesel from natural oils and fats // Russian Journal of Physical Chemistry B. 2009. Vol. 3. Р. 17

119. Simakova I.L., Simakova O.A., Mäki-Arvela P., Simakov A.V., Estrada M., Murzin D.Yu. Deoxygenation of stearic acid over supported Pd catalysts: Effect of metal dispersion // Applied Catalysis A: General. 2009. Vol. 355. Р. 100.

120. Bernas H., Eränen K., Simakova I., Myllyoja J., Mäki-Arvela P., Salmi T., Murzin D. Deoxygenation of dodecanoic acid under inert atmosphere // Fuel. 2010. Vol. 89. Р. 2033.

121. Lestari S., Simakova I.L., Tokarev A., Mäki-Arvela P., Eränen K., Murzin D.Yu. Synthesis of biodiesel via deoxygenation of stearic acid over supported Pd/C catalyst // Catalysis Letters. 2008. Vol. 122. Р. 247.

122. Snåre M. Development of next generation biodiesel technology. Doctoral thesis. Turku, Finland: Åbo Akademi University, 2006.

123. Lestari S., Mäki-Arvela P., Simakova I.L., Beltramini J., Lu G.Q Max, Murzin D.Yu. Catalytic deoxygenation of stearic acid and palmitic acid in semibatch mode // Catalysis Letters. 2009. Vol. 130. Р. 48.

124. Lestari S., Mäki-Arvela P., Bernas H., Simakova O., Sjöholm R., Beltramini J., Lu G.Q Max, Myllyoja J., Simakova I.L., Murzin D.Yu. Catalytic deoxygenation of stearic acid in a continuous reactor over a mesoporous carbon supported Pd catalyst // Energy Fuels. 2009.Vol. 23. Р. 3842.

125. Simakova I., Rozmysłowicz B., Simakova O., Mäki-Arvela P., Simakov A., Murzin D.Yu. Catalytic deoxygenation of C18 fatty acids over mesoporous Pd/C catalyst for synthesis of biofuels // Topics in Catalysis, 2011 (в печати).

126. Simakova I., Simakova O., Mäki-Arvela P., Murzin D.Yu. Decarboxylation of fatty acids over Pd supported on mesoporous carbon // Catalysis Today. 2010. Vol. 150. Р. 28.

127. Mattil K.F., Norris F.A., Stirton A.J., Swern D. Bailey’s Industrial Oil and Fat Products. John Wiley and Sons, N.Y.: (3 ed.).1964. Р. 103.

128. Veldsink J.W., Bouma M.J., Schoon N.H., Beenackers A.A.C.M. Heterogeneous hydrogenation of vegetable oils: literature review // Catal. Rev. Sci. Eng. 1997. Vol. 39. Р. 253.

129. Koetsier W.T. Hydrogenation of edible oils, technology and applications. In: Lipid Technologies and Applications / Eds. F.D. Gunstone, F.B. Padley, Marcel Dekker, Inc., New York, Basel, Hong Kong, 1997. Р. 265.

130. Dijkstra A.J. Revisiting the formation of trans isomers during partial hydrogenation of triacylglycerol oils // Eur. J. Lipid Sci. Technol. 2006. Vol. 108. P. 249.

131. Gray J.I., Russel L.F. Hydrogenation catalysts - their effect on selectivity // J. Am. Oil Chem. Soc. 1979. Vol. 56. Р. 36.

132. Ahmad M.M., Priestley T.M., Winterbottom J.M. Palladium- catalyzed hydrogenation of soybean oil // J. Am. Oil Chem. Soc. 1979. Vol. 56. Р. 571.

133. Semikolenov V.A., Simakova I.L., Sadovnichij G.V. New catalyst for vegetable oil hydrogenation // Chemical Industry (Moscow). 1996. Vol. 3. Р. 40.

134. Belkacemi K., Boulmerka A., Arul J., Hamoudi S. Hydrogenation of vegetable oils with minimum trans and saturated fatty acid formation over a new generation of Pd-catalyst // Top. Catal. 2006. Vol. 37. Р. 113.

135. Mäki-Arvela P., Kuusisto J., Sevilla E.M., Simakova I., Mikkola J.-P., Myllyoja J., Salmi T., Murzin D.Yu. Catalytic hydrogenation of linoleic acid to stearic acid over different Pd and Ru supported catalysts // Applied Catalysis.A. General. 2008. Vol. 345 (2). Р. 201.

136. Пат. 1830077 (СССР). Способ получения пищевого дезодорированного саломаса / Н.А. Комаров, В.А. Бакланов. 1993.

137. Zajcew M. The hydrogenation of fatty oils with palladium catalyst. III. Hydrogenation of fatty oils for shortening stock // J. Am. Oil Chem. Soc. 1960. Vol. 37. Р. 11.

138. Пат.2105050 C1 (РФ). Способ получения саломасов жидкофазным гидрированием растительных масел и жиров / В.А. Семиколенов, В.Н. Пармон, И.Л. Симакова, Г.В. Садовничий, З.П. Федякина, Т.В. Свиридова, И.Е. Карпенко, В.З. Шарф, Е.Ф. Литвин, П.П. Архипов, И.С. Портякова. 1998.

139. Simakova O.A., Simonov P.A., Romanenko A.V., Simakova I.L. Preparation of Pd/C catalysts via deposition of palladium hydroxide onto sibunit carbon and their application to partial hydrogenation of rapeseed oil // React. Kinet. Catal. Lett. 2008. Vol. 95. Р. 3.

140. Deliy I.V., Simakova I.L., Ravasio N., Psaro R. Catalytic behaviour of carbon supported platinum group metals in the hydrogenation and isomerization of methyl oleate // Applied Catalysis. A. General. 2009. Vol. 357. Р. 170.

141. Grau R.J., Cassano A.E., Baltanas M.A. Catalysts and network modeling in vegetable oil hydrogenation processes // Catal. Rev. Sci. Eng. 1988. Vol. 30. Р. 1.

142. Beenackers A.A.C.M. Mass transfer in gas-liquid slurry reactors // Chem. Eng. Sci. 1993. Vol. 49. Р. 3109.

143. Murzin D.Yu., Simakova I.L. Kinetic aspects of stereoselectivity in hydrogenation of fatty acids // Journal of Molecular Catalysis A. Chemical. 2008. Vol. 286. Р. 156.

144. Simakova I.L., Simakova O., Romanenko A.V., Murzin D.Yu. Hydrogenation of vegetable oils over Pd on nanocomposite carbon catalysts // Industrial and Engineering Chemistry Research. 2008. Vol. 47. Р. 7219.

145. Osadchii S.A., Tolstikov G.A. Terpene oil as starting material for industrial organic syntheses // Chemistry for sustainable development. 1997. Vol. 5. Р. 79.

146. Monteiro J.F., Veloso C.O. Catalytic conversion of terpenes into fine chemicals // Topics in Catalysis. 2004. Vol. 27. Р. 169.

147. Ogloff G. Scent and fragrances, The fascination of odors and their chemical properties. Berlin etc.: Springer-Verlag, 1990.

148. Братус И.Н. Химия душистых веществ. М.: Агропромиздат, 1992.

149. Машковский М.Д. Лекарственные средства. М.: Медицина, 1988.

150. Шнайдман Л.О. Производство витаминов. М.: Пищевая промышленность, 1973

151. Simakova I.L., Semikolenov V.A. The catalytic method of verbanol preparation with controlled isomer distribution starting from renewable material -pinene // Chemistry for sustainable development. 2003. Vol. 11. Р. 271.

152. Ancel J.E., Maksimchuk N.V., Simakova I.L., Semikolenov V.A. Kinetic peculiarities of -pinene oxidation by molecular oxygen // .Applied Catalysis A: General. 2004. Vol. 272. Р. 109.

153. Maksimchuk N.V., Simakova I.L., Semikolenov V.A. Kinetic study on isomerization of verbenol to isopiperitenol and citral // React. Kinet. Catal. Lett. 2004. Vol. 82. Р. 165.

154. Deliy I.V., Danilova I.G., Simakova I.L., Zaccheria F., Ravasio N., Psaro R. Tuning selectivity through the support in the hydrogenation of citral over copper catalysts, Chemical Industries (Boca Raton, FL, United States). 2009. Vol. 123. (Catalysis of Organic Reactions). Р. 87.

155. Ilyna I.I., Simakova I.L., Semikolenov V.A. Kinetics of the hydrogenation of alpha-pinene to cis- and trans-pinanes on Pd/C // Kinetics and Catalysis. 2002. Vol. 43. Р. 645.

156. Simakova I.L., Solkina Yu.S., Deliy I.V., Wärnå J., Murzin D.Yu. Modeling of kinetics and stereoselectivity in liquid-phase -pinene hydrogenation over Pd/C // Applied Catalysis. A. General. 2009. Vol. 356. Р. 216.

157. Ilyna I.I., Simakova I.L., Semikolenov V.A. Kinetics of pinane oxidation to pinane hydroperoxide by dioxygen // Kinetics and Catalysis. 2001. Vol. 42. Р. 41.

158. Ilyna I.I., Simakova I.L., Semikolenov V.A. Kinetics of the hydrogenation of pinane hydroperoxide to pinanol on Pd/C // Kinetics and Catalysis. 2002. Vol. 43. Р. 652.

159. Semikolenov V.A., Ilyna I.I., Simakova I.L. Linalool synthesis from a-pinene: Kinetic peculiarities of catalytic steps // Applied Catalysis. A. General. 2001. Vol. 211. Р. 91.

160. Semikolenov V.A., Ilyna I.I., Simakova I.L. Effect of heterogeneous and homogeneous pathways on selectivity of pinane-2-ol to linalool izomerization // J. Mol. Catal. A: Chem. 2002. Vol. 182. Р. 383.

161. Torre O., Renz M., Corma A. Biomass to chemicals: Rearrangement of β-pinene epoxide into myrtanal with well-defined single-site substituted molecular sieves as reusable solid Lewis-acid catalysts // Applied Catalysis A: General. 2010. Vol. 380. Р. 165.

162. Pat. 1033170 (USА). Isomerization of α-pinene / Glidden Company. 1966.

163. Pat. 3278623 (USА). Alpha pinene isomerization process and product / J.M. Derfer. 1966.

164. Pat. 3325553 (USА). Isomerization of alpha-pinene / J.M. Derfer. 1967.

165. Deliy I.V., Simakova I.L. Kinetics and thermodynamics of liquid phase isomerization of - and -pinene over Pd/C catalyst // React. Kinet. Catal. Lett. 2008. Vol. 95. Р. 161.

166. Deliy I.V., Simakova I.L. Influence of the nature of VIII group metal on catalytic activity in the reactions of - и -pinenes hydrogenation and isomerisation // Russian Chemical Bulletin. 2008. Vol. 57. Р. 2021.

167. Simakova I.L., Solkina Yu.S., Moroz B.L., Simakova O.A., Reshetnikov S.I., Prosvirin I.P., Bukhtiarov V.I., Parmon V.N., Murzin D.Yu. Selective vapour-phase α-pinene isomerization to camphene over Au catalysts // Applied Catalysis. A. General. 2010. Vol. 385. Р. 136.

168. Solkina Yu.S., Reshetnikov S., Estrada M., Simakov A.V., Murzin D.Y., Simakova I.L. Evaluation of gold on alumina catalyst deactivation dynamics during α-pinene isomerization // Chemical Engineering Journal. 2011. CEJ-D-11-00027 (в печати).

169. Mäki-Arvela P., Martin G., Simakova I., Tokarev A., Wärnå J., Hemming J., Holmbom B., Salmi T., Murzin D.Yu. Kinetics, catalyst deactivation and modeling in the hydrogenation of -sitosterol to -sitostanol over micro- and mesoporous carbon supported Pd catalysts // Chemical Engineering Journal. 2009. Vol. 154. Р. 45.

170. Lilja J., Murzina E., Grénman H., Vainio H., Salmi T., Murzin D.Yu. The selective sorption of solvents on sulfonic acid polymer catalyst in binary mixtures // Reactive and Functional Polymers. 2005. Vol. 64. Р. 111.

171. Reddy K.R., Kumar N.S. Cellulose-supported copper(0) catalyst for Aza-Michael addition // Synlett. 2006. Р. 2246.

172. Pat. 7776777 (USА). Catalyst support using cellulose fibers, preparation method thereof, supported catalyst comprising nano-metal catalyst supported on carbon nanotubes directly grown on surface of the catalyst support, and method of preparing the supported catalyst / H.Y. Kim, S. O. Han, H.S. Kim, N.J. Jeong. 2010.

173. Vyver S. van de, Geboers J., Jacobs P.A., Sels B.F. Recent advances in the catalytic conversion of cellulose // ChemCatChem. 2011. Vol. 3. Р. 82.


Рецензия

Для цитирования:


Мурзин Д.Ю., Симакова И.Л. Катализ в переработке биомассы. Катализ в промышленности. 2011;(3):8-40.

For citation:


Murzin D.Yu., Simakova I.L. Catalysis in biomass processing. Kataliz v promyshlennosti. 2011;(3):8-40. (In Russ.)

Просмотров: 209


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)