Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Oxidative conversion of methane on structured catalysts Ni–Al2O3/cordierite

Abstract

There is presentation of results of studies of the catalytic properties Ni/Al2O3 composites deposited on the ceramic honeycomb structure of the synthetic cordierite matrix block, in the oxidative conversion of methane. The tests of the pre-reduced catalyst were carried out in the flow type reactor (composition of the reaction mixture during the oxidation of methane 2–6 % CH4, 2–9 % O2 and Ar, with carbon dioxide and oxy carbon dioxide conversion of methane 2–6 % CH4, 6–12 % CO2, 0–4 % O2 and Ar). Physicochemical studies included a control of carbon formation and the oxidation, bond strength of Ni–O, the phase composition of samples on a diffractometer HZG-4C. The authors have shown that structured Ni–Al-catalysts are significantly higher than traditional granular contacts in catalytic performance in carbon dioxide conversion of methane. Increase of the stability of their performance is achieved by regulation of acid-base properties of the surface with the introduction of alkali metal oxide (Na, K), due to the slowdown of surface cocking. Established that the oxides of rare-earth metals with a low redox potential (La2O3, CeO2) increases the activity and stability of the Ni–Al2O3/cordierite catalysts in the reactions of deep and partial oxidation of carbon dioxide and methane conversion. In the presence of a catalyst (NiO + La2O3 + Al2O3)/cordierite the carbon dioxide methane conversion process can be intensified by oxygen introducing into the reaction gas mixture, which leads to lower of temperatures to achieve high conversion and no effect on the selectivity of H2.

About the Author

S. A. Solov’ev
Institute of Physical Chemistry. L.V. Pisarzhevsky National Academy of Sciences of Ukraine, Kyiv
Ukraine


References

1. Арутюнов В. С., Крылов О. В. Окислительная конверсия метана // Успехи химии. 2005. № 12. С. 1216.

2. Chunshan Song, Wei Pan. Tri-reforming of methane: a novel concept for catalytic production of industrially useful synthesis gas with desired H2/CO ratios//Catal. Today. 2004. Vol. 98, Issues 4. P. 463.

3. Крылов О. В. Углекислотная конверсия метана в синтез-газ // Рос.хим.журнал. 2000. Т. 44. № 1. С. 19.

4. Lee S.-H., Cho W., Ju W.-S. et al. Tri-reforming of CH4 using CO2 for production of synthesis gas to dimethyl ether// Catal. Today. 2003. Vol. 87, Issues 1-4. Р. 133.

5. Содесава Т. Восстановление диоксида углерода углеводородами в присутствии гетерогенных катализаторов//Кинетика и катализ. 1998. Т.40. №3. С. 452-453.

6. Giroux T., Hwang S., Ye Liu, Ruettinger W., Shore L. Monolithic structures as alternatives to particulate catalysts for the reforming of hydrocarbons for hydrogen generation// Appl. Catal.:B. 2005. Vol. 56, Issues 4. P. 95.

7. Heck R. M., Gulatiand S., Farrauto R. J. The application of monoliths for gas phase catalytic reactions Original Research Article//Chem. Eng. J. 2001. Vol. 82, Issues 1-3. P. 149.

8. Соловьев С.А., Зателепа Р.Н., Губарени Е.В. и др. Влияние добавок щелочных металлов (K2O, Na2O, Li2O) на активность и стабильность работы Ni/Al2O3 катализаторов в процессе углекислотной конверсии метана // Журнн. прикл. химии. 2007. Т. 80. №11. С. 1858.

9. Соловьев С.А., Капран А.Ю., Орлик С.Н. Окислительная конверсия метана на структурированных катализаторах M/Al2O3/кордиерит (M=Ni, Cu, Zn)// Теорет.эксперим.химия. 2007. Т. 43. № 5. С. 299.

10. Hou Z., Yokota O., Tanaka T., Yashima T. Investigation of CH4 Reforming with CO2 on Meso-Porous Al2O3-Supported Ni Catalyst// Catal. Lett. 2003. Vol. 89. № 1-2. P. 121..

11. Xu B.-Q., Wei J.-M., Yu Y.-T. et al. Size Limit of Support Particles in an Oxide-Supported Metal Catalyst: Nanocomposite Ni/ZrO2 for Utilization of Natural Gas // J. Phys. Chem., B. 2003. Vol. 107. Р. 5203.

12. Бычков В.Ю., Крылов О.В., Корчак В.Н. Исследование механизма углекислотной конверсии метана на Ni/-Al2O3 // Кинетика и катализ. 2002. Т. 43. № 1. С. 94.

13. Zheng Xu, Yumin Li, Jiyan Zhang et al. Ultrafine NiO–La2O3–Al2O3 aerogel: a promising catalyst for CH4/CO2 reforming // Appl.Catal.:A. 2001. Vol. 213, Issue 1. P. 65.

14. Jun-Mei Wei, Bo-Qing Xu, Jin-Lu Li et al. Highly active and stable Ni/ZrO2 catalyst for syngas production by CO2 reforming of methane // Appl.Catal.:A. 2000. Vol. 196, Issues 2. P. L167.

15. Bo-Qing Xu, Jun-Mei Wei, Hai-Yan Wang et al. Nano-MgO: novel preparation and application as support of Ni catalyst for CO2 reforming of methane Original Research Article // Catal.Today. 2001. Vol. 68, Issues 1-2. P. 217.

16. Xinli Zhu, Peipei Huo, Yue-ping Zhang et al. Structure and reactivity of plasma treated Ni/Al2O3 catalyst for CO2 reforming of methane //Appl.Catal.:B. 2008. Vol. 81, Issues 1-2. P. 132.

17. Laosiripojana N., Assabumrungrat S. Catalytic dry reforming of methane over high surface area ceria // Appl.Catal.:B. 2005. Vol. 60, Issues 1-2. P. 107.

18. Rostrup-Nielsen J.R., Nørskov J. K. Step sites in syngas catalysis// Top.Catal. 2006. Vol. 40. № 1-4. P.45-48.

19. De Chen, Christensen K. O., Ochoa-Fernández E. et al. Synthesis of carbon nanofibers: effects of Ni crystal size during methane decomposition Original Research Article // J. Catal. 2005. Vol. 229. № 1. P. 82.

20. Фирсова А.А., Тюленин Ю.П., Хоменко Т.И. и др. Углекислотная конверсия метана на Со-содержащих катализаторах // Кинетика и катализ. 2003. Т. 44. № 6. С. 893.

21. Toshihiko O., Toshiaki M. Role of Potassium in Carbon-Free CO2 Reforming of Methane on K-Promoted Ni/Al2O3 Catalysts // J. Catal. 2001. Vol. 204. № 1. P. 89.

22. Kim J.-H., Suh D.J., Park T.-J. et al. Int. Natural Gas Conversion Symp. Giardini-Naxos, Sicily,1998. Amsterdam: Elsevier. 1998. P. 771.

23. Капран А.Ю. Орлик С.Н. Влияние добавок щелочных металлов на активность и селективность структурированных серебряных катализаторов в реакции эпоксидирования этилена оксидом азота (Ι) // Теорет. и эксперим. химия. 2005. Т. 41. № 6. С. 360.

24. Кетов А.А., Саулин Д.В., Пузанов И.С. и др. Паровая конверсия метана на блочных катализаторах // Журн. прикл. химии. 1997. Т. 70. № 3. С. 446.

25. Бычков В.Ю., Тюленин Ю.П., Крылов О.В., Корчак В.Н. Углекислотная конверсия метана на катализаторе Co/α-Al2O3: Образование, состояние и превращения поверхностного углерода // Кинетика и катализ 2002. Т. 41. № 5. С. 775.

26. Bradford M.C.J., Vannice M.A. Catalytic reforming of methane with carbon dioxide over nickel catalysts I. Catalyst characterization and activity // Appl. Catal. A. 1996. Vol. 142. № 1. P. 73.

27. Osaki T., Mori T. Role of Potassium in Carbon-Free CO2 Reforming of Methane on K-Promoted Ni/Al2O3 Catalysts // J. Catal. 2001. Vol. 204. № 1. P. 89.

28. Slagtern A., Schuurman Y., Leclercq C. et al. Specific Features Concerning the Mechanism of Methane Reforming by Carbon Dioxide over Ni/La2O3Catalyst // J. Catal. 1997. Vol. 172. № 1. P. 118.

29. Toshihiko Osaki1, Haruhiko Fukaya, Tatsuro Horiuchi et al. Isotope Effect and Rate-Determining Step of the CO2-Reforming of Methane over Supported Ni Catalyst// J. Catal. 1998. Vol. 180. № 1. P. 106.

30. Tsipouriari V. A., Verykios X. E. Carbon and Oxygen Reaction Pathways of СO2 Reforming of Methane over Ni/La2O3 and Ni/Al2O3 Catalysts Studied by Isotopic Tracing Techniques // J. Catal. 1999. Vol. 187. № 1. P. 85.

31. Xiulan Cai, Xinfa Dong, Weiming Lin. Effect of CeO2 on the catalytic performance of Ni/Al2O3 for autothermal reforming of methane // J. Natur. Gas Chem. 2008. Vol. 17. № 1. P. 98.

32. Соловьев С.А., Губарени Е В., Курилец Я.П. Роль добавок оксидов редкоземельных элементов в составе Ni/Al2O3-катализаторов окислительной конверсии метана // Теорет. эксперим. химия. 2008. Т. 44. № 6. С. 359.

33. Hou Z. Yokota O, Tanaka T. A. Novel KCaNi/α-Al2O3 Catalyst for CH4 Reforming with CO2 // Catal.Lett. 2003. Vol. 87. № 1-2. P. 37.

34. York A. P. E., Xiao T., Green L. H. Brief Overview of the Partial Oxidation of Methane to Synthesis Gas // Topics Catal. 2003. Vol. 22. № 3/4. P. 345.

35. Liu S., Xiong G., Sheng S. Partial oxidation of methane and ethane to synthesis gas over a LiLaNiO/γ-Al2O3 catalyst // Appl. Catal.: A. 2000. Vol. 198. № 1. P. 261.

36. Shen S., Li C., Yu C. Mechanistic study of partial oxidation of methane to syngas over a Ni/Al2O3 catalyst // Stud.Surf.Sci.Catal. 1998 . Vol. 119. P. 765.

37. Tsipouriari V. A., Zhang Z., Verykios X. E. Catalytic Partial Oxidation of Methane to Synthesis Gas over Ni-Based Catalysts: I. Catalyst Performance Characteristics // J. Catal. 1998. Vol. 179. № 1. P. 283.


Review

For citations:


Solov’ev S.A. Oxidative conversion of methane on structured catalysts Ni–Al2O3/cordierite. Kataliz v promyshlennosti. 2011;(4):31-42. (In Russ.)

Views: 59


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)