

Application of catalytic microchannel systems to enhance processes for hydrogen generation from hydrocarbon feedstock
Abstract
In the early 1990’s, the progress in modern microelectronic technologies gave an impetus to studies of specific behavior of microchannel systems in various physicochemical processes. The microchannel systems were shown, with heat exchangers, mixers and microchannel reactors (microreactors) as examples, to intensify all the processes in the microchannels. In the present review paper, principal criteria, that make possible to classify a flow system as the microchannel one, are discussed. Three main catalytic processes – steam conversion, partial oxidation and autothermal conversion of light hydrocarbons and alcohols into hydrogen-containing gas – are considered and analyzed. It is shown with methane and methanol as examples that the process of hydrogen generation is enhanced indeed in the microreactor. In steam conversion of methanol catalyzed by Zn/TiO2 at 450 °C, the specific hydrogen productivity per catalyst weight was as high as 78,6 L/(h·gcat), the outlet quantity of carbon monoxide being no more than 1 mol.%. In partial oxidation of methane over catalyst La0,2Zr0,4Ce0,4/LaNiPt (0,48 g) in a microreactor at 700 °C, the specific hydrogen productivity was 521 L/(h·gcat) per catalyst weight and 42 L/(h·cm3) per reaction zone volume. When so, the thermal capacity (heat generated at hydrogen combustion) is 117 kW for the microreactor with 1,0 dm3 reaction volume that is comparable to the power of the gasoline engine of a modern vehicle. Hydrogen production from bioethanol, gasoline and diesel fuel also seems promising. Inspection of relevant literature in the field demonstrated that these fuels can compete successfully with methanol and methane, even though the catalytic conversion proceeds at temperatures 650 °C or higher. Results obtained in developing fuel cell – catalytic generators of hydrogen-containing gas with a low content of carbon monoxide (less than 20 ppm) – are reported in the last Section. Integrated microchannel systems are shown to be the most promising fuel cells.
About the Authors
L. L. MakarshinRussian Federation
V. N. Parmon
Russian Federation
References
1. Ramsey J.M., Widmer E., Verpoorte E., Banard S. // Proceedings of the 2nd International Symposium on Miniaturized Total Analysis Systems, Basel. 1996. Р. 24.
2. Van der Schoot B.H., Verpoorte E.M.J., Jeanneret S., Manz A., de Rooji N.F. // Proceedings of the “Micro Total Analysis Systems, μTAS ’94". Twente. Netherlands 1994; Р. 181.
3. Suckling C.J. // Chem. Commun. 1982. Р. 661.
4. Drzaj R. // Proceedings of the “Int. Symp. On Synthesis of Zeolites, their Structure Determination and their Technological Use”. Ljubljana.1985. Р. 24.
5. Fikentscher H., Gerrns H., Schuller H. // Angew. Chem., 1960, Vol. 72. P. 856.
6. Макаршин Л.Л., Пармон В.Н. // Рос. Хим. Ж. 2006, Т. L, № 6. С. 19.
7. Макаршин Л.Л., Пармон В.Н. // Энергия. 2009. № 10. С. 13.
8. Schubert K., Bier W., Brandner J., Fichtner M., Franz C., Linder G. // Process Miniaturization: 2nd International Conference on Microreaction Technology, IMRET 2; Topical Conference Preprints, AIChE, New Orleans, USA, 1998. Р. 88.
9. Knight J.B., Vishwanath A., Brody J.P., Austin R.H. // Phys. Rev. Lett. 1998. Vol. 80. Р. 3863.
10. Gunther Kolb, Volker Hessel. // Chemical Engineering Journal. 2004. Vol. 98. Р. 1.
11. Anderson J.B. // Chem. Eng. Sci. 1963. V. 18. Р.147.
12. Gorke O., Pfeifer P., Schubert K. // Proceedings of the 6th International Conference on Microreaction Technology, New York, AIChE. 2002. Р. 262.
13. Pfeifer P., Fichtner M., Schubert K., Liauw M.A., Emig G. // Proceedings of the 3rd International Conference on Microreaction Technology, Springer, Berlin. 2000. Р. 372.
14. Walter S., Liauw M. // Proceedings of the 4th International Conference on Microreaction Technology, New York, AIChE. 2000. Р. 209.
15. An Male P., De Croon M.H.J.M., Tiggelaar R.M. et. al. // International Journal of Heat and Mass Transfer. 2004. Vol. 47. Р. 87.
16. Battersby Scott, Teixeira Paula, Beltramini Jorge, et. al. // Catalysis Today. 2006. Vol. 116. P. 12.
17. Danie l van Herk, Pedro Castano, Michiel Makkee. et. al. // Applied Catalysis A: General, 2009. Vol. 365. P. 199.
18. Карпов С.А., Капустин В.М., Старков А.К. // Автомобильные топлива с биоэтанолом, М. 2007.
19. Astbury G.R. // Process safety and environment protection. 2008. Vol. 86. P. 397.
20. Spiers, H.M. Technical Data on Fuel (4th edition). (British National Committee World Power Conference, London). 1943.
21. Ahmed S., Krumpelt M. // Journal of Hydrogen Energy. 2001. Vol. 26. Р. 291.
22. Van Swaaij W.P.M., Van der Ham A.G.J., Kronberg A.E. // Chemical Engineering Journal. 2002. Vol. 90. Р. 25.
23. Wolfgang Ehrfeld, Volker Hessel, Holger Löwe. // Microreactors: New Technology for Modern Chemistry. ISBN: 3-527-29590-9 Hardcover April. 2000.
24. Jamelyn D. Holladay, Yong Wang, and Evan Jones. // Chem. Rev. 2004. Vol. 104, P. 4767.
25. Holladay J.D., Hu J., King D.L., Wang Y. // Catalysis Today. 2009. Vol. 139. P. 244.
26. By Jean-Claude Charpentier. // Chem. Eng. Technol. 2005. Vol. 28, №3, P. 255.
27. Papautsky Ian, Brazzle John, Ameel Timothy ,. Bruno Frazier A. // Sensors and Actuators. 1999. Vol. 73. P 101.
28. Freni S., Calogero G., Cavallaro S. // Journal of Power Sources. 2000. Vol. 87. P. 28.
29. Horny C., Kiwi-Minsker L.,. Renken A. // Chemical Engineering Journal. 2004. Vol. 101. P. 3.
30. Peña M.A., Gómez J.P., Fierro J.L.G. // Applied Canalysis A: General. 1966. Vol. 144, P. 7.
31. Yu Hao, Chen Hongqing, Pan Minqiang, et. al. // Applied Catalysis A: General, 2007. Vol. 327. P. 106.
32. Fukuhara Choji, Kamata Yoshiyuki, Igarashi Akira. // Applied Catalysis A: General. 2007. Vol. 330. Р. 108.
33. Schneider Adrian, Mantzaras John, Jansohn Peter. // Chemical Engineering Science. 2006. Vol. 61. P. 4634.
34. Michael J. Stutz, Nico Hotz, Dimos Poulikakos. // Chemical Engineering Science, 2006. Vol. 61. Р. 4027.
35. Stefanidisa Georgios D., Vlachosa DionisiosG. // Chemical Engineering Science 2009. Vol. 64. P. 4856.
36. Makarshin L.L., Andreev D.V., Gribovskiy A.G., Parmon V.N. // J. Hydrogen Energy. 2007. Vol. 32. P. 3864.
37. Грибовский А.Г., Макаршин Л.Л., Андреев Д.В., Пармон В.Н., и др. // Кинетика и катализ. 2009. Т. 50, № 1, С.15.
38. Макаршин Л.Л.,Андреев Д.В, Грибовский А.Г., Пармон В.Н. и др. // Кинетика и катализ. 2007. Т. 48, № 5. С.1.
39. Shawn D. Lin, Ting C. Hsiao, Li-Chung Chen. // Applied Catalysis A: General, 2009, Vol. 360. P. 226.
40. Hsiao T.C., Lin S.D. // J. Mol. Catal. 2007. Vol. A277. P. 137.
41. Karim Ayman, Bravo Jaime, Gorm David, et. al. // Catalysis Today. 2005. Vol. 110. P. 86.
42. Xinhai Yu, Shan-Tung, Zhendong Wang, Huang Huajiang. // International Journal of Green Energy. 2008. 5, № 4, P. 281.
43. de Wild P.J., Verhaak M.J.F.M. // Catalysis Today. 2000. Vol. 60. Р. 3.
44. Thormann J., Pfeifer P., Schubert K., Kunzb U. // Chemical Engineering Journal 2008. Vol. 135S. P. S74.
45. Aidu Qi, Brant Peppley, Kunal Karan. // Fuel Processing Technology. 2007. Vol. 88. P. 3.
46. Alvarez-Galvan M.C., Navarro R.M., Rosa F., et. al. // Fuel. 2008. Vol. 87. P. 2502.
47. Barbier Jr J, Duprez D. // Appl Catal A Gen. 1992. Vol. 85. P. 89.
48. Zhuang Q, Qin Y, Chang L. // Appl Catal. 1991. Vol. 70. P. 1.
49. Schmidt L.D., Klein E.J., Leclerc C.A., Krummenacher J.J., West K. N. // Chemical Engineering Science. 2003. Vol. 58. P. 1037.
50. Balonek C.M.,. Colby J.L, and L.D. // AIChE Journal. 2010. Vol. 56, №4, P. 456.
51. Vaidya P.D., Rodrigues A.E. // Chem. Eng. J. 2006 Vol. 117. P. 39.
52. Haryanto A., Fernando S., Murali N., Adhikari S. // Energy Fuels. 2005. Vol. 19. P. 2098.
53. Ni M., Leung Y.C., Leung M.K.H. // Int. J. Hydrogen Energy. 2007. Vol. 32. P. 3238.
54. Navarro R.M., Penã M.A., Fierro J.L.G. // Chem. Rev. 2007. Vol. 107. P. 3952.
55. Palo D.R., Dagle R.A., Holladay J.D. // Chem. Rev. 2007. Vol. 107. P. 3992.
56. Casanovas Albert, Domı´nguez Montserrat, Ledesma Cristian, et. al. // Catalysis Today. 2009. Vol. 143. P. 32.
57. Zhang B., Tang X., Li Y., Cai W., Xu Y., Shen W. // Catal. Commun. 2006. Vol. 7. P. 367
58. Weijie Cai, Baocai Zhang, Yong Li, Yide Xu, Wenjie Shen. // Catalysis Communications. 2007. Vol. 8. P. 1588.
59. Men Y., Kolb G., Zapf R., Hessel V.and Löwe H. // Trans IChemE, Part B, Process Safety and Environmental Protection. 2007. Vol. 85(B5). P. 413.
60. Azadi P., Syed K.M., Farnood R. // Applied Catalysis A: General. 2009. Vol. 358. P. 65.
61. Antal, M.J., Allen, S.G., Schulman, D., Xu, X.D., Divilio, R.J. // Industrial and Engineering Chemistry Research. 2000. Vol. 39. P. 4040.
62. Arai, K., Inomata, H., Sato, T., Smith Jr., R.L. // Japanese Patent JP. 2006. 326420A.
63. Ogihara Yuko, Richard L., Smith Jr., Inomata Hiroshi, Kunio Arai. // Bioresource Technology. 2008. Vol. 99. P. 4338.
64. Гулевич А.В., Привезенцев В.В., Десятов А.В., Злоцовский А.М., Извольский А.М., Мамонтов Ю.Н., Макаршин Л.Л., Садыков В.А. // Перспективные энергетические технологии на земле и в космосе. Сб. статей/ П27 // Под ред. акад. А.С. Коротеева – М. ЗАО «Светлица». 2008.
65. Макаршин Л.Л. // Химия и жизнь. 2010. №3. C. 14.
66. Shin-Kun Ryi, Jong-Soo Park, Seung-Hoon Choi, Sung-Ho Cho, Sung-Hyun Kim. // Chemical Engineering Journal. 2005. Vol. 113. P. 47.
67. Кириллов В.А., Кузин Н.А., Амосов Ю.И., Киреенков В.В., Собянин В.А. // Катализ в промышленности. 2011. №1. С. 60.
Review
For citations:
Makarshin L.L., Parmon V.N. Application of catalytic microchannel systems to enhance processes for hydrogen generation from hydrocarbon feedstock. Kataliz v promyshlennosti. 2011;(5):5-19. (In Russ.)