Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Influence of the structure and acidity of zeolites on the synthesis of solketal from glycerol and acetone

https://doi.org/10.18412/1816-0387-2023-3-13-23

Abstract

In order to establish the main factors that make it possible to regulate the activity and selectivity of the solketal synthesis process from glycerol and acetone, the acidic and catalytic properties of mordenite (MOR, SiO2 /Al2O3 = 29.2) and faujasite (FAU, SiO2 /Al2O3 = 14.9, 97 and 810) were studied. The reaction was investigated at 25 and 50°C, at acetone/glycerol molar ratio of 2.5. In the presence of zeolites, solketal is the main product with a selectivity of 88.1–94.7 %. It has been shown that the main factors determining the conversion of glycerol and the yield of solketal are the availability of reagents to active sites, the number and strength of acid sites, as well as their resistance to the poisoning effect of water molecules formed during the reaction.

About the Authors

O. N. Kovalenko
Boreskov Institute of Catalysis, Novosibirsk
Russian Federation


I. I. Simentsova
Boreskov Institute of Catalysis, Novosibirsk
Russian Federation


V. N. Panchenko
Boreskov Institute of Catalysis, Novosibirsk
Russian Federation


M. N. Timofeeva
Boreskov Institute of Catalysis, Novosibirsk
Russian Federation


References

1. Persistence Market research Market. https://www.persistencemarketresearch.com/market-research/biodiesel-market.asp.

2. Nanda M.R., Yuan Z., Qin W., Xu C. (Charles). // Catalysis Reviews. 2016. V. 58. P. 309-336. http://dx.doi.org/10.1080/01614940.2016.1166005

3. Checa M., Nogales-Delgado S., Montes V., Encinar J.M. // Catalysts. 2020. V. 10. P. 1279. http://dx.doi.org/10.3390/catal10111279

4. Bagnato G., Iulianelli A., Sanna A., Basile A. // Membranes. 2017. V. 7. P. 17. http://dx.doi.org/10.3390/membranes7020017

5. Максимов А.Л., Нехаев А.И., Рамазанов Д.Н. // Нефтехимия. 2015. Т. 55. № 1. С. 3—24. http://dx.doi.org/10.7868/S0028242115010104

6. Correa I., Faria R.P.V., Rodrigues A.E. // Sustain. Chem. 2021. V. 2. P. 286-324. https://doi.org/10.3390/suschem2020017

7. Mota C.J.A., Silva C.X.A., Rosenbach N.J., Costa J., Silva F. // Energy Fuels. 2010. V. 24. Р. 2733-2736. http://dx.doi.org/10.1021/EF9015735

8. Data Bridge Market Research. https://www.databridgemarketresearch.com/reports/global-solketal-market

9. Talebian-Kiakalaieh A., Amin N.A.S., Najaafi N., Tarighi S.A. // Frontiers in Chemistry. 2018. V. 6. Р. 1-25. http://dx.doi.org/10.3389/fchem.2018.00573

10. Manjunathan P., Maradur S.P., Halgeri A.B., and Shanbhag V. // J. Mol. Catal. A Chem., 2015. V. 396. P. 47-54. http://dx.doi.org/10.1016/j.molcata.2014.09.028

11. Maksimov L., Nekhaeva I., Ramazanov D.N., Arinicheva Y.A., Dzyubenko A., Khadzhiev S.N. // Pet. Chem. 2011. V. 51. P. 61—69. http://dx.doi.org/10.1134/S0965544111010117

12. Rossa V., Pessanha Y.S.P., Díaz G.C., Câmara L.D.T., Pergher S.B.C., Aranda D.A.G. // Ind. Eng. Chem. Res. 2017. V. 56. P. 479-488. http://dx.doi.org/10.1021/ACS.IECR.6B03581

13. da Silva C.X.A., Goncalves V.L.C. and Mota C.J.A. Water tolerant zeolite catalyst for the acetalisation of glycerol // Green. Chem. 2009. V. 11. P. 38-41. http://dx.doi.org/10.1039/B813564A

14. Kowalska-Kus J., Held A., Frankowski M., Nowinska K. // J. Mol. Catalysis A: Chem. 2017. V. 426. P. 205-212. http://dx.doi.org/10.1016/j.molcata.2016.11.018

15. Priya S.Sh., Selvakannan P.R., Chary K.V.R., Kantam M.L., Bhargava S.K. // Molecular Catalysis. 2017. V. 434. Р. 184-193. http://dx.doi.org/10.1016/J.MCAT.2017.03.001

16. Venkatesha N.J., Bhata Y.S., Prakash B.S.J. // RSC Adv. 2016. V. 6. Р. 18824-18833. http://dx.doi.org/10.1039/C6RA01437B

17. Stawicka K., Diaz-Alvarez A.E., Calvino-Casilda V., Trejda M., Banares M.A., Ziolek M. // J. Phys. Chem. 2016. V. 120. Р. 16699—16711. http://dx.doi.org/10.1021/acs.jpcc.6b04229

18. Rossa V., Diaz G.C., Muchave G.J., Aranda D.A.G., Pergher S.B.C. // Chapter 3 in book: Glycerine production and transformation — An Innovative platform from Sustainable Biorefinery and Energy, Ed. M. Frediani, L. Rosi, M. Bartoli, 2019. IntechOpen, ISBN 978-1-78984-691-1. http://dx.doi.org/10.5772/intechopen.85817

19. Deutsch J., Martin A., Lieske H. // J. Catal. 2007. V. 245. P. 428—435. https://doi.org/10.1016/J.JCAT.2006.11.006

20. Serafim H., Fonseca I.M., Ramos A.M., Vital J., Castanheiro J.E. // Chem. Eng. J. 2011. V. 178. P. 291—296. https://doi.org/10.1016/j.cej.2011.10.004

21. Structure Commission of the International Zeolite Association (IZA-SC). http://www.iza-structure.org/databases; Date created: 16.10.2016 (Last updated: 24.01.2022)

22. Паукштис Е.А. // Инфракрасная спектроскопия в гетерогенном кислотном основном катализе. 1992. Новосибирск: Наука. 254 С.

23. Król M., Kolezynski A.,Mozgawa W. // Molecules. 2021. V. 26. P. 342. https://doi.org/10.3390/molecules26020342

24. Ghasemi Z., Younesi H. // Waste Biomass Valor. 2012. V. 3. P. 61-74. https://doi.org/0.1007/s12649-011-9084-4

25. Edanol Y.D.G., Usman K.A.S., Buenviaje S.C., Mantua Jr. M.E., Payawan L.M. Jr. // KIMIKA. 2018. V. 29. P. 17-21. https://doi.org/10.26534/KIMIKA.V29I1.17-21

26. Ma Y.-K., Rigolet S., Michelin L., Paillaud J.-L., Mintova S., Khoerunnisa F., Daou T.J., Nga E.-P. // Micropor. Mesopor. Mater. 2021. V. 311. P. 110683. https://doi.org/10.1016/j.micromeso.2020.110683

27. Bordiga S., Lamberti C., Bonino F., Travert A., Thibault-Starzyk F. // Chem. Soc. Rev. 2015. V. 44. P. 7262-7341. https://doi.org/10.1039/c5cs00396b.

28. Silva C.X.A., Mota C.J.A. // Biomass Bioenergy. 2011. V. 35. P. 3547-3551. https://doi.org/10.1016/j.biombioe.2011.05.004


Review

For citations:


Kovalenko O.N., Simentsova I.I., Panchenko V.N., Timofeeva M.N. Influence of the structure and acidity of zeolites on the synthesis of solketal from glycerol and acetone. Kataliz v promyshlennosti. 2023;23(3):13-23. (In Russ.) https://doi.org/10.18412/1816-0387-2023-3-13-23

Views: 247


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)