

Influence of the structure and acidity of zeolites on the synthesis of solketal from glycerol and acetone
https://doi.org/10.18412/1816-0387-2023-3-13-23
Abstract
In order to establish the main factors that make it possible to regulate the activity and selectivity of the solketal synthesis process from glycerol and acetone, the acidic and catalytic properties of mordenite (MOR, SiO2 /Al2O3 = 29.2) and faujasite (FAU, SiO2 /Al2O3 = 14.9, 97 and 810) were studied. The reaction was investigated at 25 and 50°C, at acetone/glycerol molar ratio of 2.5. In the presence of zeolites, solketal is the main product with a selectivity of 88.1–94.7 %. It has been shown that the main factors determining the conversion of glycerol and the yield of solketal are the availability of reagents to active sites, the number and strength of acid sites, as well as their resistance to the poisoning effect of water molecules formed during the reaction.
About the Authors
O. N. KovalenkoRussian Federation
I. I. Simentsova
Russian Federation
V. N. Panchenko
Russian Federation
M. N. Timofeeva
Russian Federation
References
1. Persistence Market research Market. https://www.persistencemarketresearch.com/market-research/biodiesel-market.asp.
2. Nanda M.R., Yuan Z., Qin W., Xu C. (Charles). // Catalysis Reviews. 2016. V. 58. P. 309-336. http://dx.doi.org/10.1080/01614940.2016.1166005
3. Checa M., Nogales-Delgado S., Montes V., Encinar J.M. // Catalysts. 2020. V. 10. P. 1279. http://dx.doi.org/10.3390/catal10111279
4. Bagnato G., Iulianelli A., Sanna A., Basile A. // Membranes. 2017. V. 7. P. 17. http://dx.doi.org/10.3390/membranes7020017
5. Максимов А.Л., Нехаев А.И., Рамазанов Д.Н. // Нефтехимия. 2015. Т. 55. № 1. С. 3—24. http://dx.doi.org/10.7868/S0028242115010104
6. Correa I., Faria R.P.V., Rodrigues A.E. // Sustain. Chem. 2021. V. 2. P. 286-324. https://doi.org/10.3390/suschem2020017
7. Mota C.J.A., Silva C.X.A., Rosenbach N.J., Costa J., Silva F. // Energy Fuels. 2010. V. 24. Р. 2733-2736. http://dx.doi.org/10.1021/EF9015735
8. Data Bridge Market Research. https://www.databridgemarketresearch.com/reports/global-solketal-market
9. Talebian-Kiakalaieh A., Amin N.A.S., Najaafi N., Tarighi S.A. // Frontiers in Chemistry. 2018. V. 6. Р. 1-25. http://dx.doi.org/10.3389/fchem.2018.00573
10. Manjunathan P., Maradur S.P., Halgeri A.B., and Shanbhag V. // J. Mol. Catal. A Chem., 2015. V. 396. P. 47-54. http://dx.doi.org/10.1016/j.molcata.2014.09.028
11. Maksimov L., Nekhaeva I., Ramazanov D.N., Arinicheva Y.A., Dzyubenko A., Khadzhiev S.N. // Pet. Chem. 2011. V. 51. P. 61—69. http://dx.doi.org/10.1134/S0965544111010117
12. Rossa V., Pessanha Y.S.P., Díaz G.C., Câmara L.D.T., Pergher S.B.C., Aranda D.A.G. // Ind. Eng. Chem. Res. 2017. V. 56. P. 479-488. http://dx.doi.org/10.1021/ACS.IECR.6B03581
13. da Silva C.X.A., Goncalves V.L.C. and Mota C.J.A. Water tolerant zeolite catalyst for the acetalisation of glycerol // Green. Chem. 2009. V. 11. P. 38-41. http://dx.doi.org/10.1039/B813564A
14. Kowalska-Kus J., Held A., Frankowski M., Nowinska K. // J. Mol. Catalysis A: Chem. 2017. V. 426. P. 205-212. http://dx.doi.org/10.1016/j.molcata.2016.11.018
15. Priya S.Sh., Selvakannan P.R., Chary K.V.R., Kantam M.L., Bhargava S.K. // Molecular Catalysis. 2017. V. 434. Р. 184-193. http://dx.doi.org/10.1016/J.MCAT.2017.03.001
16. Venkatesha N.J., Bhata Y.S., Prakash B.S.J. // RSC Adv. 2016. V. 6. Р. 18824-18833. http://dx.doi.org/10.1039/C6RA01437B
17. Stawicka K., Diaz-Alvarez A.E., Calvino-Casilda V., Trejda M., Banares M.A., Ziolek M. // J. Phys. Chem. 2016. V. 120. Р. 16699—16711. http://dx.doi.org/10.1021/acs.jpcc.6b04229
18. Rossa V., Diaz G.C., Muchave G.J., Aranda D.A.G., Pergher S.B.C. // Chapter 3 in book: Glycerine production and transformation — An Innovative platform from Sustainable Biorefinery and Energy, Ed. M. Frediani, L. Rosi, M. Bartoli, 2019. IntechOpen, ISBN 978-1-78984-691-1. http://dx.doi.org/10.5772/intechopen.85817
19. Deutsch J., Martin A., Lieske H. // J. Catal. 2007. V. 245. P. 428—435. https://doi.org/10.1016/J.JCAT.2006.11.006
20. Serafim H., Fonseca I.M., Ramos A.M., Vital J., Castanheiro J.E. // Chem. Eng. J. 2011. V. 178. P. 291—296. https://doi.org/10.1016/j.cej.2011.10.004
21. Structure Commission of the International Zeolite Association (IZA-SC). http://www.iza-structure.org/databases; Date created: 16.10.2016 (Last updated: 24.01.2022)
22. Паукштис Е.А. // Инфракрасная спектроскопия в гетерогенном кислотном основном катализе. 1992. Новосибирск: Наука. 254 С.
23. Król M., Kolezynski A.,Mozgawa W. // Molecules. 2021. V. 26. P. 342. https://doi.org/10.3390/molecules26020342
24. Ghasemi Z., Younesi H. // Waste Biomass Valor. 2012. V. 3. P. 61-74. https://doi.org/0.1007/s12649-011-9084-4
25. Edanol Y.D.G., Usman K.A.S., Buenviaje S.C., Mantua Jr. M.E., Payawan L.M. Jr. // KIMIKA. 2018. V. 29. P. 17-21. https://doi.org/10.26534/KIMIKA.V29I1.17-21
26. Ma Y.-K., Rigolet S., Michelin L., Paillaud J.-L., Mintova S., Khoerunnisa F., Daou T.J., Nga E.-P. // Micropor. Mesopor. Mater. 2021. V. 311. P. 110683. https://doi.org/10.1016/j.micromeso.2020.110683
27. Bordiga S., Lamberti C., Bonino F., Travert A., Thibault-Starzyk F. // Chem. Soc. Rev. 2015. V. 44. P. 7262-7341. https://doi.org/10.1039/c5cs00396b.
28. Silva C.X.A., Mota C.J.A. // Biomass Bioenergy. 2011. V. 35. P. 3547-3551. https://doi.org/10.1016/j.biombioe.2011.05.004
Review
For citations:
Kovalenko O.N., Simentsova I.I., Panchenko V.N., Timofeeva M.N. Influence of the structure and acidity of zeolites on the synthesis of solketal from glycerol and acetone. Kataliz v promyshlennosti. 2023;23(3):13-23. (In Russ.) https://doi.org/10.18412/1816-0387-2023-3-13-23