

Features of the deactivation of Mg/HZSM-5 catalysts for the synthesis of lower olefins from dimethyl ether in a slurry reactor
https://doi.org/10.18412/1816-0387-2023-3-24-31
Abstract
In a slurry reactor, the formation of compaction products on Mg/HZSM-5 catalysts, irrespective of the SiO2 /Al2O3 molar ratio in the zeolite, proceeds predominantly on strong acidic sites. The composition of compaction products (mostly trimethyl- and tetramethylbenzenes) virtually does not change with a growth of the molar ratio; however, their amount decreases, which is related to a growth of the mesopore volume with an increase in the SiO2 /Al2O3 ratio. This leads to a decrease in diffusion limitations and contribution of secondary reactions and enhances the removal of coke precursors from the zeolite surface, thus promoting the catalyst activity (the conversion of DME increases twofold). The composition of reaction products changes only slightly with a growth of the SiO2 /Al2O3 molar ratio, the total selectivity to lower olefins is ca. 70 wt.%. A rapid loss of the Mg/HZSM-5 activity with extending the operation time in a slurry reactor is caused not by coking, but rather by «clogging» of the catalyst with decomposition products of the dispersion medium (polydimethylsiloxane).
About the Authors
A. N. StashenkoRussian Federation
T. I. Batova
Russian Federation
T. K. Obukhova
Russian Federation
N. V. Kolesnichenko
Russian Federation
References
1. Колесниченко Н.В., Колесникова Е.Е., Китаев Л.Е., Бирюкова Е.Н., Трухманова Н.И., Хаджиев С.Н. // Нефтехимия. 2012. Т. 52, № 3. С. 179—185; Kolesnichenko N.V., Kolesnikova E.E., Kitaev L.E., Biryukova E.N., Trukhmanova N.I., Khadzhiev S.N. // Petroleum Chemistry. 2012. Vol. 52. P. 155—160. https://doi.org/10.1134/S0965544112030061
2. Bonura G., Cordaro M., Cannilla C., Mezzapica A., Spadaro L., Arena F., Frusteri F. // Catal. Today. 2014. Vol. 228. P. 51—57. https://doi.org/10.1016/j.cattod.2013.11.017
3. Zhu Y., Wang S., Ge X., Liu Q., Luo Z., Cen K. // Fuel Process. Technol. 2010. Vol. 91. P. 424—429. https://doi.org/10.1016/j.fuproc.2009.05.001
4. Hajjar Z., Khodadadi A., Mortazavi Y., Tayyebi S., Soltanali S. // Fuel. 2016. Vol. 179. P. 79—86. https://doi.org/10.1016/j.fuel.2016.03.046
5. Shirazi L., Jamshidi E., Ghasemi M.R. // Cryst. Res. Technol. 2008. Vol. 43. P. 1300—1306. https://doi.org/10.1002/crat.200800149
6. Kolesnichenko N.V., Pavlov V.S., Stashenko A.N., Yashina O.V., Ezhova N.N., Konnov S.V., Khadzhiev S.N. // React. Kinet. Mech. Catal. 2018. Vol. 124. P. 825—838. https://doi.org/10.1007/s11144-018-1368-2
7. Omata K., Yamazaki Y., Watanabe Y., Kodama K., Yamada M. // Ind. Eng. Chem. Res. 2009. Vol. 48. P. 6256—6261. https://doi.org/10.1021/ie801757p
8. Zhao T.-S., Takemoto T., Tsubaki N. // Catal. Commun. 2006. Vol. 7. P. 647—650. https://doi.org/10.1016/j.catcom.2005.11.009.
9. Man J., Zhang Q., Xie H., Pan J., Tan Y., Han Y. // J. Fuel Chem. Technol. 2011. Vol. 39. P. 42—46. https://doi.org/10.1016/S1872-5813(11)60008-X
10. Ежова Н.Н., Яшина О.В., Сташенко А.Н., Хиврич Е.Н., Колесниченко Н.В. // Кинетика и катализ. 2019. Т. 60, № 5. С. 674—680. http://dx.doi.org/10.1134/S0453881119040038; Ezhova N.N, Yashina O.V., Stashenko A.N., Khivrich E.N., Kolesnichenko N.V. // Kinet. Catal. 2019. Vol. 60, № 5. P. 681—687. http://dx.doi.org/10.1134/S0023158419040037
11. Колесниченко Н.В., Ежова Н.Н., Сташенко А.Н., Кузьмин А.Е., Яшина О.В., Голубев К.Б. // Журнал прикладной химии. 2018. Т. 91, № 11. С. 1566—1572. https://doi.org/10.1134/S0044461818110063; Kolesnichenko N.V., Ezhova N.N., Stashenko A.N., Kuz'min A.E., Yashina O.V., Golubev K.B. // Russian J. Appl. Chem. 2018. Vol. 91, № 11. P. 1773—1778. https://doi.org/10.1134/S107042721811006X
12. Barbier J., Churin E., Marecot P., Menezo J.C. // Applied Catalysis. 1988. Vol. 36. P. 277—285. https://doi.org/10.1016/S0166-9834(00)80121-9
13. Горяинова Т.И., Бирюкова Е.Н., Колесниченко Н.В., Хаджиев С.Н. // Нефтехимия. 2011. Т. 51, № 3. С. 181—185; Goryainova T.I., Biryukova E.N., Kolesnichenko N.V., Khadzhiev S.N. // Petroleum Chemistry 2011. Vol. 51. P. 169—173. https://doi.org/10.1134/S096554411101004X
14. Хаджиев С.Н., Колесниченко Н.В., Хиврич Е.Н., Батова Т.И. // Нефтехимия. 2019. Т. 59, № 3. С. 304—314. https://doi.org/10.1134/S0028242119030092
15. Колесниченко Н.В., Яшина О.В., Ежова Н.Н., Бондаренко Г.Н., Хаджиев С.Н. // Журнал физической химии. 2018. Т. 92, № 1. С. 115—121. https://doi.org/10.7868/S0044453718010120; Kolesnichenko N.V., Yashina O.V., Ezhova N.N., Bondarenko G.N., Khadzhiev S.N. // Russian J. Phys. Chem. A. 2018. Vol. 92, № 1. P. 118—123. https://doi.org/10.1134/S0036024418010120
16. Konnov S.V., Pavlov V.S., Kots P.A., Zaytsev V.B., Ivanova I.I. // Catal. Sci. Technol. 2018. Vol. 8. P. 1564—1577. https://doi.org/10.1039/C7CY02045G
17. Guisnet M., Costa L., Ribeiro F.R. // J. Mol. Catal. A: Chem. 2009. Vol. 305. P. 69—83. https://doi.org/10.1016/j.molcata.2008.11.012
18. Magnoux P., Roger P., Canaff C., Fouche V., Gnep N., Guisnet M. // Stud. Surf. Sci. Catal. 1987. Vol. 34. P. 317—330. https://doi.org/10.1016/S0167-2991(09)60370-0
19. Obukhova T.K., Batova T.I., Kolesnikova E.E., Kolesnichenko N.V. // Catal. Lett. 2020. Vol. 150, № 3. P. 762—770. http://dx.doi.org/10.1007/s10562-019-02980-8
20. Колесниченко Н.В., Ежова Н.Н., Яшина О.В. // Нефтехимия. 2016. Т. 56, № 6. С. 607—611.
21. Xue Yu, Yuewei Zhang, Bing Liu, Huiyong Ma, Yan Wang, Qiang Bao, Zhenlü Wang // Chem. Res. Chin. Univ. 2018. Vol. 34, № 3. P. 485—489.
22. Obukhova Т.К., Stashenko A.N., Batova Т.I., Kolesnichenko N.V. // J. Chem. Technol. Biotechnol. 2021. Vol. 96. P. 2696—2703. http://dx.doi.org/10.1002/jctb.6817
Review
For citations:
Stashenko A.N., Batova T.I., Obukhova T.K., Kolesnichenko N.V. Features of the deactivation of Mg/HZSM-5 catalysts for the synthesis of lower olefins from dimethyl ether in a slurry reactor. Kataliz v promyshlennosti. 2023;23(3):24-31. (In Russ.) https://doi.org/10.18412/1816-0387-2023-3-24-31