

The use of microalgae biomass for the production of marketable products. Part 2. Modern approaches to complex processing of microalgae biomass
https://doi.org/10.18412/1816-0387-2023-3-43-51
Abstract
The goal of the paper is the review of literature on the processing of microalgae biomass using advanced chemical and bioengineering approaches into various types of biofuels (methyl esters of fatty acids, ethanol, butanol, hydrogen) and marketable chemical products, particularly polyunsaturated fatty acids, pigments, and proteins. The paper deals with the manufacture of products using different strategies that are applied for the development of modern approaches to complex bioprocessing of microalgae biomass.
About the Authors
Yu. V. SamoylovaRussian Federation
K. N. Sorokina
Russian Federation
V. N. Parmon
Russian Federation
References
1. Global Energy Review 2019. / Agency I. E., 2020.
2. Ahmed S F., Mofijur M., Nahrin M., Chowdhury S. N., Nuzhat S., Alherek M., Rafa N., Ong H.C., Nghiem L.D., Mahlia T.M.I. // International Journal of Hydrogen Energy. 2022. V. 47. № 88. P. 37321-37342.
3. Сорокина К.Н., Самойлова Ю.В., Пармон В.Н. // Катализ в промышленности. 2022. T. 22. № 3. C. 66–85.
4. Пармон В.Н., Яковлев В.А., Сорокина К.Н., Чесноков В.В., Булушев Д.А., Яшник С.А., Громов Н.В., Дубинин Ю.В., Федоров А.В., Самойлова Ю.В., Чичкань А.С., Анисимов О.А., Болотов В.А., Голубь Ф.С., Грибовский А.Г., Черноусов Ю.Д., Шамирзаев В.Т., Болтенков В.В., Таран О.П., Медведева Т.Б. Новые физические и каталитические процессы глубокой переработки углеводородного сырья и биомассы для решения задач экологически чистой и ресурсосберегающей энергетики. Новосибирск: издательско-полиграфический центр НГУ, 2020. 394 с.
5. Gorry P.-L., Sánchez L., Morales M. // Energy from Microalgae / Jacob-Lopes E. et al. ‒ Cham: Springer International Publishing, 2018. P. 89–140.
6. Ehimen E.A., Sun Z.F., Carrington C.G., Birch E.J., Eaton-Rye J.J. // Applied Energy. 2011. V. 88. № 10. P. 3454–3463.
7. Hernández D., Solana M., Riaño B., García-González M.C., Bertucco A. // Bioresour Technol. 2014. T. 170. P. 370–378.
8. Kim E.J., Kim S., Choi H.-G., Han S.J. // Biotechnology for Biofuels. 2020. T. 13. № 1. P. 20.
9. Lorenz R.T., Cysewski G.R. // Trends in Biotechnology. 2000. V. 18. № 4. P. 160–167.
10. Mitra M., Patidar S.K., George B., Shah F., Mishra S. // Algal Research. 2015. V. 8. P. 161–167.
11. Campenni L., Nobre B.P., Santos C.A., Oliveira A.C., Aires-Barros M.R., Palavra A.M., Gouveia L. // Appl Microbiol Biotechnol. 2013. V. 97. № 3. P. 1383–93.
12. Ansari F.A., Shriwastav A., Gupta S.K., Rawat I., Guldhe A., Bux F. // Bioresour Technol. 2015. V. 179. P. 559–564.
13. Ansari F.A., Shriwastav A., Gupta S.K., Rawat I., Bux F. // Industrial & Engineering Chemistry Research. 2017. V. 56. № 12. P. 3407–3412.
14. Dong T., Knoshaug E.P., Davis R., Laurens L.M.L., Van Wychen S., Pienkos P.T., Nagle N. // Algal Research. 2016. V. 19. P. 316–323.
15. Sorokina K.N., Samoylova Y.V., Gromov N.V., Ogorodnikova O.L., Parmon V.N. // Bioresour Technol. 2020. V. 317. P. 124026.
16. Moncada J., Tamayo J.A., Cardona C.A. // Chemical Engineering Science. 2014. V. 118. P. 126–140.
17. Albarelli J.Q., Santos D.T., Ensinas A.V., Marechal F., Cocero M.J., Meireles M.A.A. // Renewable Energy. 2018. V. 129. P. 776–785.
18. Gentili F.G. // Bioresour Technol. 2014. V. 169. P. 27–32.
19. Piligaev A.V., Sorokina K.N., Shashkov M.V., Parmon V.N. // Bioresour Technol. 2018. V. 250. P. 538–547.
20. Mondal M., Goswami S., Ghosh A., Oinam G., Tiwari O.N., Das P., Gayen K., Mandal M.K., Halder G.N. // 3 Biotech. 2017. V. 7. № 2. P. 99.
21. Chisti Y. // Biotechnology Advances. 2007. V. 25. № 3. P. 294–306.
22. Maurya R., Paliwal C., Ghosh T., Pancha I., Chokshi K., Mitra M., Ghosh A., Mishra S. // Bioresour Technol. 2016. V. 214. P. 787–796.
23. Brownbridge G., Azadi P., Smallbone A., Bhave A., Taylor B., Kraft M. // Bioresour Technol. 2014. V. 151. P. 166–173.
24. Shah M.M., Liang Y., Cheng J.J., Daroch M. // Front Plant Sci. 2016. V. 7. P. 531.
25. Solovchenko A.E. // Photosynth Res. 2015. V. 125. № 3. P. 437–49.
26. Chua E.T., Schenk P.M. // Bioresour Technol. 2017. V. 244. Pt. 2. P. 1416–1424.
27. Chew K.W., Yap J.Y., Show P.L., Suan N.H., Juan J.C., Ling T.C., Lee D.-J., Chang J.-S. // Bioresour Technol. 2017. V. 229. P. 53–62.
28. Hariskos I., Posten C. // Biotechnology Journal. 2014. V. 9. № 6. P. 739–752.
29. Lee A.K., Lewis D.M., Ashman P.J. // Biomass and Bioenergy. 2012. V. 46. P. 89–101.
30. Keegan D., Kretschmer B., Elbersen B., Panoutsou C. // Biofuels, Bioproducts and Biorefining. 2013. V. 7. № 2. P. 193–206.
31. Yuan J., Kendall A., Zhang Y. // GCB Bioenergy. 2015. V. 7. № 6. P. 1245–1259.
32. Barr W.J., Landis A.E. // The International Journal of Life Cycle Assessment. 2018. V. 23. № 5. P. 1141–1150.
33. Wiesberg I.L., Brigagão G.V., de Medeiros J.L., de Queiroz Fernandes Araújo O. // Journal of Environmental Management. 2017. V. 203. P. 988–998.
34. Satya A.D.M., Cheah W.Y., Yazdi S.K., Cheng Y.-S., Khoo K.S., Vo D.-V.N., Bui X.D., Vithanage M., Show P.L. // Environmental Research. 2023. V. 218. P. 114948.
Review
For citations:
Samoylova Yu.V., Sorokina K.N., Parmon V.N. The use of microalgae biomass for the production of marketable products. Part 2. Modern approaches to complex processing of microalgae biomass. Kataliz v promyshlennosti. 2023;23(3):43-51. (In Russ.) https://doi.org/10.18412/1816-0387-2023-3-43-51