

Каталитическое гидрирование СО2 как способ получения ценных химических продуктов
https://doi.org/10.18412/1816-0387-2023-4-6-32
Аннотация
Представлен обзор, посвященный обобщению и сравнительному анализу литературных данных последних лет по исследованиям в области конверсии диоксида углерода в метанол, диметиловый эфир и углеводороды С2+, включая олефины, путем каталитического гидрирования. Показано, что основными путями достижения высокой активности и селективности таких процессов являются направленный дизайн катализаторов и подбор условий проведения процессов гидрирования, в том числе с использованием сверхкритического CO2 и альтернативных традиционным физико-химических методик активации CO2 (электрокатализ, фотокатализ).
Ключевые слова
Об авторах
И. А. МакарянРоссия
И. В. Седов
Россия
В. И. Савченко
Россия
Список литературы
1. Porosoff M.D., Yan B., Chen J.G. // Energy & Environmental Science. 2016. V. 9. P. 62–73. https://doi.org/10.1039/C5EE02657A
2. International Energy Agency, Global Energy & CO 2 Status Report, Paris, 2019. URL: https://www.iea.org/reports/global-energy-co2-status-report-2019.
3. Ramirez A., Gevers L., Chowdhury A.D., Abou-Hamad E., Aguilar-Tapia A., Hazemann J-L., Wehbe N., Al Abdulghani A.J., Kozlov S.M., Luigi Cavallo L., Gascon J. // ChemCatChem. 2019. V. 11(12). P. 2879–2886. https://doi.org/10.1002/cctc.201900762
4. Sutter J.D., Berlinger J. Final draft of climate deal formally accepted in Paris. CNN. Cable News Network, Turner Broadcasting System, Inc. URL: https://www.academia.edu/36485719/Main_assignment_tunvir_sir_Cop21.
5. Crippa M., Guizzardi D., Muntean M., Schaaf E., Solazzo E., Monforti-Ferrario F., Olivier J.G.J., Vignati E. Fossil CO2 emissions of all world countries - 2020 Report, EUR 30358 EN, Publications Office of the European Union, Luxembourg, 2020, ISBN 978-92-76-21515-8. https://doi.org/10.2760/143674
6. Global CO2 emissions rose less than initially feared in 2022 as clean energy growth offset much of the impact of greater coal and oil use. IEA. 02 March 2023. URL: https://www.iea.org/news/global-co2-emissions-rose-less-than-initially-feared-in-2022-as-clean-energy-growth-offset-much-of-the-impact-of-greater-coal-and-oil-use
7. United Nations Framework Convention on Climate Change (UNFCCC). Adoption of the Paris Agreement. FCCC/CP/2015/L.9/Rev.1. 2015. URL: https://unfccc.int/sites/default/files/resource/docs/2015/cop21/eng/l09r01.pdf
8. North M., Styring P. // Faraday Discuss. 2015. V. 183. P. 489–502. https://doi.org/10.1039/C5FD900H
9. Ateka A., Rodriguez-Vega P., Erena J, Aguayo A.T, Bilbao J. // Fuel Processing Technology. 2022. V. 233. Article 107310. https://doi.org/10.1016/j.fuproc.2022.107310
10. Kamkeng A.D.N., Wang M., Hu J., Du W., Qian F. // Chem. Eng. J. 2021. V. 409. Article 128138. https://doi.org/10.1016/j.cej.2020.128138.
11. De S., Dokania A., Ramirez A., Gascon J. // ACS Catal. 2020. V. 10. P. 14147–14185. https://dx.doi.org/10.1021/acscatal.0c04273
12. Yaashikaa P.R., Kumar P.S., Varjani S.J., Saravanan A. // Journal of CO2 Utilization. 2019. V. 33. P. 131–147. https://doi.org/10.1016/j.jcou.2019.05.017
13. Chen G., Wang L. Godfroid T., Snyders R. // Plasma Chem. Gas Convers. IntechOpen. 2018. 86 p. ISBN 978-1-78984-841-0. https://doi.org/10.5772/intechopen.80798.
14. Jarvis S.M., Samsatli S. // Renewable and Sustainable Energy Reviews. 2018. V. 85. P. 46–68. https://doi.org/10.1016/j.rser.2018.01.007
15. Donphai W., Witoon T., Faungnawakij K., Chareonpanich M. // Journal of CO2 Utilization. 2016. V. 16. P. 245–256. https://doi.org/10.1016/j.jcou.2016.07.011
16. Yan N., Philippot K. // Curr. Opin. Chem. Eng. 2018. V. 20. P. 86–92. https://doi.org/10.1016/j.coche.2018.03.006
17. Advances in Science, Technology & Innovation. IEREK Interdisciplinary Series for Sustainable Development. Inamuddin, Rajender Boddula, Mohd Imran Ahamed, Anish Khan Editors. Springer Nature Switzerland AG. ISBN 978-3-030-72876-2. Carbon Dioxide Utilization to Sustainable Energy and Fuels. 2021. 354 p. https://doi.org/10.1007/978-3-030-72877-9
18. CO2 Hydrogenation Catalysis. Edited by Yuichiro Himeda. Wiley-VCH. 2021. 320 p. ISBN: 978-3-527-34663-9. URL: https://www.wiley.com/en-us/CO2+Hydrogenation+Catalysis-p-9783527824106
19. Wang M., Oko E. // Int. J. Coal Sci. Technol. 2017. V. 4. P. 1–4. https://doi.org/10.1007/s40789-017-0162-5
20. Peters M., Kçhler B., Kuckshinrichs W., Leitner W. // ChemSusChem. 2011. V. 4. P. 1216–1240. https://doi.org/10.1002/cssc.201000447
21. Salvi B.L., Jindal S. // SN Appl. Sci. 2019. V. 1. Article 885. https://doi.org/10.1007/s42452-019-0909-2
22. Rubin E.S., Mantripragada H., Marks A., Versteeg P., Kitchin J. // Prog. Energy Combust. Sci. 2012. V. 38. P. 630–671. https://doi.org/10.1016/j.pecs.2012.03.003
23. Al-Mamoori A., Krishnamurthy A., Rownaghi A.A., Rezaei F. // Energy Technol. 2017. V. 5. P. 834–849. https://doi.org/10.1002/ente.201600747
24. Horowitz C.A. Paris Agreement, Int. Leg. Mater. 2016. URL: https://doi.org/10.1017/s0020782900004253.
25. Fu H-C., You F, Li H-R., He L-N. // Front. Chem. 2019. V. 7. Article 525. https://doi.org/10.3389/fchem.2019.00525
26. Макарян И.А., Седов И.В., Максимов А.Л. // Журнал прикладной химии. 2020. Т. 93. № 12. С. 1716–1733. https://doi.org/10.31857/S0044461820120038. / Makaryan I.A., Sedov I.V., Maksimov A.L. // Russ J Appl Chem. 2020. V. 93. P. 1815–1830. https://doi.org/10.1134/S1070427220120034
27. Pearson R.J., Eisaman M.D., Turner J.W.G., Edwards P.P., Jiang Z., Kuznetsov V.L., Littau K.A., Di Marco L., Taylor S.R.G. // Proceedings of the IEEE. February 2012. Vol. 100, No. 2. P. 440 – 460. https://doi.org/10.1109/JPROC.2011.2168369
28. Недоливко В.В., Засыпалов Г.О., Вутолкина А.В., Гущин П.А., Винокуров В.А., Куликов Л.А., Егазарьянц С.В., Караханов Э.А., Максимов А.Л., Глотов А.П. // Журнал прикладной химии. 2020. Т. 93. № 6. C. 763–787. https://doi.org/10.31857/S0044461820060018
29. De Falco M., Iaquaniello G., Centi G. Editors. CO2: A Valuable Source of Carbon, Green Energy Tech. Springer-Verlag. London 2013. ISSN 1865-3529. https://doi.org/10.1007/978-1-4471-5119-7.
30. Kaiser P., Unde R.B., Kern C., Jess A. // Chem.Ing. Tech. 2013. V. 85. P. 489–499. https://doi.org/10.1002/cite.201200179.
31. Su X., Yang X., Zhao B., Huang Y. // Journal of Energy Chemistry. 2017. V. 26(5). P. 854–867. https://doi.org/10.1016/j.jechem.2017.07.006E.
32. Dzuryk R.S. // Chemical Engineering Research and Design. 2019. V. 144. P. 354–369. http://dx.doi.org/10.1016/j.jechem.2017.07.006.
33. Trusov B.G. // Proc. XIV Int. Symp. on Chemical Thermodynamics, St. Petersburg, Russia, 2002, P. 483–484.
34. Smith R.J., Muruganandam L, Murthy S.S. // International Journal of Chemical Reactor Engineering. 2010. V. 8(1). https://doi.org/10.2202/1542-6580.2238
35. Савченко В.И., Зимин Я.С., Бузило Э., Никитин А.В., И.В. Седов А.В., Арутюнов В.С. // Нефтехимия. (в печати).
36. Li Y.N., He L.N., Liu A.H., Lang X.D., Yang Z.Z., Yu B., Luan C-R. // Green Chem. 2013. V. 15. P. 2825–2829. https://doi.org/10.1039/C3GC41265B
37. Rezayee N.M., Huff C.A., Sanford M.S. // J. Am. Chem. Soc. 2015. V. 137. P. 1028–1031. https://doi.org/10.1021/ja511329m.
38. Kothandaraman J., Goeppert A., Czaun M., Olah G.A., Prakash G.K. // J. Am. Chem. Soc. 2016. V. 138. P. 778–781. https://doi.org/10.1021/jacs.5b12354
39. Kothandaraman J., Goeppert A., Czaun M., Olah G.A., Prakash G.K.S. // Green Chem. 2016. V. 18. P. 5831–5838. https://doi.org/10.1039/c6gc01165a
40. Su J., Lu M., Lin H.F. // Green Chem. 2015. V. 17. P. 2769–2773. https://doi.org/10.1039/c5gc00397k
41. Reller C., Pöge M., Lißner A., Mertens F.O.R.L. // Environ. Sci. Technol. 2014. V. 48 P. 14799–14804. https://doi.org/10.1021/es503914d
42. Bobadilla L.F., Riesco-García J.M., Penelás-Pérez G., Urakawa A. // J. CO2 Util. 2016. V. 14. P. 106–111. https://doi.org/10.1016/j.jcou.2016.04.003
43. Su X., Yang X.F., Huang Y., Liu B., Zhang T. // Acc. Chem. Res. 2019. V. 52(3). P. 656–664. https://doi.org/10.1021/acs.accounts.8b00478
44. Daza Y.A., Kuhn J.N. // SC Adv. 2016. V. 6. P. 49675–49691. https://doi.org/10.1039/c6ra05414e
45. Chen X., Su X., Su H.-Y., Liu X., Miao S., Zhao Y., Sun K., Huang Y., Zhang T. // ACS Catal. 2017 V. 7(7). P. 4613–4620. https://doi.org/10.1021/acscatal.7b00903
46. Aziz M.A.A., Jalil A.A., Triwahyono S., Ahmad A. // Green Chem. 2015, V. 17(5). P. 2647–2663. https://doi.org/10.1039/C5GC0011F
47. Wang Y., Winter L.R., Chen J.G., Yan B. // Green Chem. 2021. V. 23. P. 249–267. https://doi.org/10.1039/D0GC03506H
48. Kattel S., Liu P., Chen J.G. // J. Am. Chem. Soc. 2017. V. 139. P. 9739–9754. https://doi.org/10.1021/jacs.7b05362
49. Li Y.N., He L.N., Lang X.D., Liu X.F., Zhang S. // RSC Adv. 2014. V. 4. P. 49995–50002. https://doi.org/10.1039/c4ra08740b.
50. Li W., Wang H., Jiang X., Zhu J., Liu Z., Guo X.,
51. Song C. // RSC Adv. 2018. V. 8. P. 7651–7669. https://doi.org/10.1039/c7ra13546g
52. Sharma P., Sebastian J., Ghosh S., Creaser D., Olsson L. // Catal. Sci. Technol. 2021. V. 11. P. 1665–1697. https://doi.org/10.1039/d0cy01913e
53. Rafiee A., Khalilpour K.R., Milani D., Panahi M. // J. Environ. Chem. Eng. 2018. V. 6. P. 5771–5794, https://doi.org/10.1016/j.jece.2018.08.065.
54. Shoinkhorova T., Cordero-Lanzac T., Ramirez A., Chung S.H., Dokania A., Ruiz- Martinez J., Gascon J. // ACS Catal. 2021. V. 11. P. 3602–3613. https://doi.org/ 10.1021/acscatal.0c05133.
55. Perez-Uriarte P., Ateka A., Gamero M., Aguayo A.T., Bilbao J. // Ind. Eng. Chem. Res. 2016. V. 55. P. 6569–6578. https://doi.org/ 10.1021/acs.iecr.6b00627.
56. Fan W.K., Tahir M. // Journal of Environmental Chemical Engineering. 2021. V. 9(4). Article 105460. https://doi.org/10.1016/j.jece.2021.105460
57. Galadima A., Muraza O. // Renewable and Sustainable Energy Reviews. 2019. V. 115(11). Article 109333. https://doi.org/10.1016/j.rser.2019.109333
58. Tahir M., Tahir B. // Chem. Eng. J. 2020. V. 400. Article 125868. https://doi.org/10.1016/j.cej.2020.125868
59. Azzolina-Jury F. // J. Ind. Eng. Chem. 2019. V. 71. P. 410–424. https://doi.org/10.1016/j.jiec.2018.11.053
60. Manthiram K., Beberwyck B.J., Alivisatos A.P. // J. Am. Chem. Soc. 2014. V. 136. P. 13319–13325. https://doi.org/10.1021/ja5065284
61. Alitalo A., Niskanen M., Aura E. // Bioresour. Technol. 2015. V. 196. P.
62. –605. https://doi.org/10.1016/j.biortech.2015.08.021.
63. Ryu U.J., Kim S.J., Lim H.-K., Kim H., Choi K.M., Kang J.K. // Sci. Rep. 2017. V. 7(1). Article 612. https://doi.org/10.1038/s41598-017-00574-1
64. Vogt C., Monai M., Kramer G.J., Weckhuysen B.M. // Nat. Catal. 2019. V. 2. P. 188–197. https://doi.org/10.1038/s41929-019-0244-4
65. Audi e-gas Project, Germany. Market Data. 2021. URL: https://www.power-technology.com/marketdata/audi-e-gas-project-germany/
66. Swickrath M.J, Anderson M. The Development of Models for Carbon Dioxide Reduction Technologies for Spacecraft Air Revitalization. 42nd International Conference on Environmental Systems, 15-19 July 2012, San Diego, California. AIAA 2012-3586. 2012. 19 р. https://doi.org/10.2514/6.2012-3586
67. Макарян И.А., Рудакова М.И., Савченко В.И., Арутюнов В.С. // Мир нефтепродуктов. Вестник нефтяных компаний. 2011. № 10. С. 3–9.
68. Макарян И.А., Рудакова М.И., Савченко В.И. // Мир нефтепродуктов. Вестник нефтяных компаний. 2011. № 11. С. 3–9.
69. Olah G.A., Goeppert A., Prakash G.K.S. Beyond Oil and Gas: The Methanol Economy, 2nd ed. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2009, ISBN: 98-3-527-32422-4.
70. Zhong J., Yang X., Wu Z., Linag B., Huang Y., Zhang T. // Chem. Soc. Rev. 2020. V. 4(5). P. 1385−1413. https://doi.org/10.1039/c9cs00614a
71. Dang S.S., Yang H.Y., Gao P., Wang H., Li X.P., Wei W., Sun Y.H. // Catal. Today. 2019. V. 330. P. 61−75. https://doi.org/10.1016/j.cattod.2018.04.021
72. Ye R.P., Ding J., Gong W., Argyle M.D., Zhong Q., Wang Y., Russell C.K., Xu Z., Russell A.G., Li Q., Fan M., Yao Y.G. // Nat. Commun. 2019. V. 10. P. 1–15. https://doi.org/10.1038/s41467-019-13638-9.
73. Din I.U., Shaharun M.S., Alotaibi M.A., Alharthi A.I., Naeem A. // J. CO2 Util. 2019. V. 34. P. 20−33. https://doi.org/10.1016/j.jcou.2019.05.036
74. Guil-Lopez R., Mota N., Llorente J., Millan E., Pawelec B., Fierro J.L.G., Navarro R.M. // Materials 2019. V. 12(23). Article 3902. https://doi.org/10.3390/ma12233902.
75. Hus M., Kopac D., Stefancic N.S., Jurkovic D.L., Dasireddy V.D.B.C., Likozar B. // Catal. Sci. Technol. 2017. V. 7. P. 5900–5913. https://doi.org/10.1039/c7cy01659j
76. Kopac D., Likozar B., Hus M. // Appl. Surf. Sci. 2019. V. 497. Article 143783. https://doi.org/10.1016/j.apsusc.2019.143783
77. Ojelade O.A., Zaman S.F. // Catal. Surv. Asia 2020. V. 24. P. 11–37. https://doi.org/10.1007/s10563-019-09287-z.
78. Martin O., Martín A.J., Mondelli C., Mitchell S., Segawa T.F., Hauert R., Drouilly C., Curulla-Ferre D., Perez-Ramírez J. // Angew. Chemie Int. Ed. 2016. V. 55, P. 6261–6265. https://doi.org/10.1002/anie.201600943.
79. Jiang Z., Xiao T., Kuznetsov V.L., Edwards P.P. // Phil. Trans. Roy. Soc. A, 2010. V. 368. P. 3343–3364. https://doi.org/10.1098/rsta.2010.0119
80. Balzarotti R., Ambrosetti M., Beretta A., Groppi G., Tronconi E. // Chem. Eng. J. 2020. V. 391. P. 123394–123405. https://doi.org/10.1016/j.cej.2019.123494
81. Kapteijn F., Moulijn J.A. // Catal. 2022. V. 383. P. 5–14. https://doi.org/10.1016/j.cattod.2020.09.026.
82. Gancarczyk A., Sindera K., Iwaniszyn M., Piątek M., Macek W. Jodłowski P.J., Wroński S., Sitarz M., Łojewska J., Kołodziej A. // Catalysts. 2019. V. 9(7). P. 587–599. https://doi.org/10.3390/catal9070587.
83. Rui N., Wang Z., Sun K., Ye J., Ge, Liu C. // Appl. Catal. B Environ. 2017. V. 218. P. 488–497. https://doi.org/10.1016/j.apcatb.2017.06.069
84. Rodriguez J.A., Liu P., Stacchiola D.J., Senanayake S., White M.G., Chen J.G. Hydrogenation of CO2 to Methanol: Importance of Metal-Oxide and
85. Metal-Carbide Interfaces in the Activation of CO2. Chemistry Department,
86. Brookhaven. National Laboratory, Upton, NY 11973, USA. BNL-108509-2015-JA. URL: https://www.bnl.gov/isd/documents/89413.pdf
87. Chakrabortty S., Nayak J., Ruj B., Pal P., Kumar R., Banerjee S., Sardar M., Chakraborty P. // Journal of Environmental Chemical Engineering. 2020. V. 8(4). Article 103935. https://doi.org/10.1016/j.jece.2020.103935
88. Bellotti D., Dierks M., Moellenbruck F., Magistri L., Görner K., Oeljeklaus G. // E3S Web of Conferences. 2019. V. 113. Article 01013. https://doi.org/10.1051/e3sconf/201911301013
89. Etim U.J., Song Y., Zhong Z. // Front. Energy Res., V. 8. Article 545431 https://doi.org/10.3389/fenrg.2020.545431
90. Zohour B., Yilgor I., Gulgun M.A., Birer O., Unal U., Leidholm C., Senkan S. // ChemCatChem. 2016. V. 8. P. 1464–1469. https://doi.org/10.1002/cctc.201600020
91. Fiordaliso E.M., Sharafutdinov I., Carvalho H.W.P., Grunwaldt J.D., Hansen T.W., Chorkendorff I., Wagner J.B., Damsgaard C.D. // ACS Catalysis. 2015. V. 5(10). P. 5827–5836. https://doi.org/10.1021/acscatal.5b01271
92. Studt F., Sharafutdinov I., Abild-Pedersen F., Elkjær C.F., Hummelshøj J.S., Dahl S., Chorkendorff I., Nørskov J.K. // Nature Chemistry. 2014. V. 6. P. 320–324. https://doi.org/10.1038/nchem.1873
93. Pavlisic A., Hus M., Prasnikar A., Likozar B. // J. Clean. Prod. 2020. V. 275. Article 122958. https://doi.org/10.1016/j.jclepro.2020.122958
94. Li S, Guo L, Ishihara T. // Catal. Today. 2020. V. 339. P. 352–361. https://doi.org/10.1016/j.cattod.2019.01.015
95. US Patent 8198338B2, 2012.
96. Hindman M. Methanol to gasoline (MTG) technology – An alternative for liquid fuel production, presented at the Gasification Technol. Conf., Colorado Springs, CO, Oct. 4–7, 2009. ISBN: 9781634390828. https://www.proceedings.com/23225.html
97. Bandi A., Specht M. Renewable carbon-based transportation fuels. In Landolt-Bornstein, vol. III/3C, Energy Technologies, Subvolume C: Renewable Energy. Berlin, Germany: Springer-Verlag. 2006. P. 441–482. ISBN: 978-3-540-42962-3.
98. Zhang H., Desideri U. // Energy. 2020. V. 199. Article 117498. https://doi.org/10.1016/j.energy.2020.117498 .
99. Dimethyl Ether Market Size, Share & COVID-19 Impact Analysis, By Application (LPG Blending, Aerosol Propellant, Transportation Fuel, and Others), and Regional Forecast, 2021-2028. URL: https://www.fortunebusinessinsights.com/
100. Дементьев К.И., Дементьева О.С., Иванцов М.И., Куликова М.В., Магомедова М.В., Максимов А.Л., Лядов А.С., Старожицкая А.В., Чудакова М.В. // Нефтехимия. 2022. Т. 62. № 3. С. 289–327. https://doi.org/10.31857/S0028242122030017
101. Ham H., Baek S.W., Shin C.-H., Bae J.W. // ACS Catal. 2018. V. 9. P. 679–690. https://doi.org/10.1021/acscatal.8b04060
102. Nie X., Jiang X., Wang H., Luo W., Janik M.J., Chen Y., Guom X., Song C. //ACS Catal. 2018. V. 8. P. 4873–4892. https://doi.org/10.1021/acscatal.7b04150
103. Saravanan K., Ham H., Tsubaki N., Bae J.W. // Appl. Catal. B Environ. 2017. V. 217. P. 494–522. https://doi.org/10.1016/j.apcatb.2017.05.085
104. Phienluphon R., Pinkaew K., Yang G., Li J., Wei Q., Yoneyama Y., Vitidsant T., Tsubaki N. // Chem. Eng. J. 2015. V. 270. P. 605–611. https://doi.org/10.1016/j.cej.2015.02.071
105. Sánchez-Contador M., Ateka A., Aguayo A.T., Bilbao J. // Fuel Processing Technology. 2018. V. 179. P. 258–268. https://doi.org/10.1016/j.fuproc.2018.07.009
106. Koohsaryan E., Anbia M. // Chinese Journal of Catalysis. 2016. V. 37(4). P. 447–467. https://doi.org/10.1016/S1872‐2067(15)61038‐5
107. Formic acid market - Growth, trends, covid-19 impact, and forecasts (2022–2027). URL: https:://www.mordorinitelligence.com/industry-reports/formic-acid-market
108. Onishi N., Kanega R., Kawanami H.. Himeda Y. // Molecules. 2022. V. 27. Article 455. https://doi.org/10.3390/molecules27020455
109. Sordakis K., Tang C., Vogt L.K., Junge H., Dyson P.J., Belle M., Laurenczy G. // Chem. Rev. 2018. V. 118(2). P. 372–433. https://doi.org/10.1021/acs.chemrev.7b00182
110. Sun R., Liao Y., Bai S-T., Zheng M., Zhou C., Zhang T., Sels B.F. // Energy Environ. Sci. 2021. V. 14 (3). P. 1247–1285. https://doi.org/10.1033/DoEE03575K
111. Roy S., Cherevotan A., Peter S.C. // ACS Energy Lett. 2018. V. 3. P. 1938–1966. https://doi.org/10.1021/acsenergylett.8b00740.
112. Wang W., Wang S., Ma X., Gong J. // Chem. Soc. Rev. 2011. V. 40. P. 3703–3727. https://doi.org/10.1039/C1CS15008A
113. Prieto G. // ChemSusChem 2017. V. 10. P. 1056–1070. https://doi.org/10.1002/cssc.201601591.
114. Yang H., Zhang C., Gao P., Wang H., Li X., Zhong L., Wei W., Sun Y. // Catalysis Science & Technology. 2017. V. 7(20). P. 4580–4598. https://doi.org/10.1039/C7CY01403A
115. Hwang S.M., Han S.J., Min J.E., Park H.G., Jun K.W., Kim S.K. // J. of CO2 Utilization. 2019. V. 34. P. 522–532. https://doi.org/10.1016/J.JCOU.2019.08.004.
116. Guo L., Cui Y., Zhang P., Peng X., Yoneyama Y., Yang G., Tsubaki N. // Chemistry-Select. 2018. V. 3(48). P. 13705–13711. https://doi.org/10.1002/SLCT.201803335.
117. Yao B., Ma W., Gonzalez-cortes S., Xiao T., Edwards, P.P. // Green-house Gases: Science and Technology. 2017. V. 15. P. 1–15. https://doi.org/10.1002/ghg.1694
118. Mikulcic H., Ridjan S.I., Dominkovic D.F., Wan Alwi S.R., Manan Z.A., Tan R., Duic N., Hidayah M.S.N., Wang X. // Renew. Sustain. Energy Rev. 2019. V. 114. Article 109338. https://doi.org/10.1016/j.rser.2019.109338
119. Saeidi S., Najari S., Hessel V., Wilson K., Keil F.J., Concepcion P., Suib S.L., Rodrigues A.E. // Prog. Energy Combust. Sci. 2021. V. 85. Article 100905. https://doi.org/10.1016/j.pecs.2021.100905.
120. Modak A., Bhanja P., Dutta S., Chowdhury B., Bhaumik A. // Green Chem. 2020. V. 22. P. 4002–4033, https://doi.org/10.1039/D0GC01092H.
121. Li J., Wang L., Cao Y., Zhang C., He P., Li H. // Chinese Journal of Chemical Engineering 2018. V. 26. P. 2266–2279. https://doi.org/10.1016/J.CJCHE.2018.07.008.
122. Khangale P.R. // Catal Lett. 2022. V. 152(3). P. 2745–2755. https://doi.org/10.1007/s10562-021-03849-5
123. Gao P., Zhang L., Li S., Zhou Z., Sun Y. // ACS Cent. Sci. 2020. V. 6(10). P. 1657–1670. https://doi.org/10.1021/acscentsci.0c00976
124. Wang W., Wang X., Zhang G., Wang K., Zhang F., Yan T., Miller J.T., Guo X., Song C. // Front. Chem. Eng. 2021. V. 3. Article 708014. https://doi.org/10.3389/fceng.2021.708014
125. Kim J.-S., Lee S.-B., Kang M.-C., Lee K.-W., Choi M.-J., Yong Kang Y. // Korean J. Chem. Eng. 2003. V. 20(5). P. 967–972. https://doi.org/10.1007/BF02697307
126. Gao P., Li S., Bu X., Dang S., Liu Z., Wang H., Zhong L., Qiu M., Yang C., Cai J., Wei W., Sun Y. // Nat Chem. 2017. V. 9(10). P. 1019–1024. https://doi.org/10.1038/nchem.2794.
127. Wei J., Ge Q., Yao R., Wen Z., Fang C., Guo L., Xu H., Sun J. // Nat. Commun. 2017. V. 8. P. 15174–15181. https://doi.org/10.1038/ncomms15174
128. Fujiwara M., Sakurai H., Shiokawa K., Iizuka Y. // Catalysis Today. 2015. V. 242. Part B. P. 255–260. https://doi.org/10.1016/j.cattod.2014.04.032
129. Owen R.E., O’ByrneJ.P., Mattia D., Plucinski P., Pascu S.I., Jones M.D. // Chemical Communications. 2013. V. 49. P. 11683–11685. https://doi.org/10.1039/C3CC46791K
130. Owen R.E., Plucinski P., Mattia D., Torrente-Murciano, L., Ting V.P., Jones M.D. // Journal of CO2 Utilization. 2016. V. 16. P. 97–103. https://doi.org/10.1016/j.jcou.2016.06.009
131. Owen R.E., Mattia D., Plucinski P., Jones M.D. // ChemPhysChem. 2017. V. 18. P. 3211–3218. https://doi.org/10.1002/cphc.201700422
132. Rodemerck U., Holeňa M., Wagner E., Smejkal Q., Barkschat A., Baerns M. // ChemCatChem. 2013. V. 5(7). P. 1948¬–1955. https://doi.org/10.1002/cctc.201200879.
133. Calizzi M., Mutschler R., Patelli N., Migliori A., Zhao K., Pasquini L., Züttel A. // Nanomaterials. 2020. V. 10. Article 1360. https://doi.org/10.3390/nano10071360.
134. Esquius J.R., Bahruji H., Bowker M., Hutchings G.J. // Faraday Discuss. 2021. V. 230. P. 52–67. https//doi.org/10.1039/d0fd00135j.
135. Choi Y.H., Jang Y.J., Park H., Kim W.Y., Lee Y.H., Choi S.H., Lee J.S. // Appl. Catal. B. 2017. V. 202. P. 605–610. https://doi.org/10.1016/j.apcatb.2016.09.072.
136. Qian Q., hang J., Cui M., Han B. // Nat. Commun. 2016. V. 7. Article 11481. https://doi.org/10.1038/ncomms11481
137. He Z., Cui M., Qingli Qian Q., Zhang J., Liu H., Han B. // PNAS Nexus. 2019. V. 116 (26). P. 12654–12659. https://doi.org/10.1073/pnas.1821231116
138. Wang Q., Chen Y., Li Z. // J. Nanosci. Nanotechnol. 2019. V. 19. P. 3162–3172. https://doi.org/10.1166/jnn.2019.16586.
139. Ma Z., Porosoff M.D. // ACS Catal. 2019. V. 9. P. 2639–2656. https://doi.org/10.1021/acscatal.8b05060
140. Ronda-Lloret M., Rothenberg G., Shiju N.R. // ChemSusChem 2019. V. 12. P. 3896–3914. https://doi.org/10.1002/cssc.201900915
141. Li Z., Wang J., Qu Y., Liu H., Tang C., Miao S., Feng Z., An H., Li C. // ACS Catal. 2017. V. 7. P. 8544–8548. https://doi.org/10.1021/acscatal.7b03251
142. Witoon T., Chaipraditgul N., Numpilai T., Lapkeatsere V., Ayodele B.V., Cheng C.K., Siri-Nguan N., Sornchamni T., Limtrakul J. // Chem. Eng. Sci. 2021. V. 233. Article 116428. https://doi.org/10.1021/acscatal.7b03251
143. Ojelade O.A., Zaman S.F. // Journal of CO2 Utilization. 2021. V. 47. Article 101506. https://doi.org/10.1016/j.jcou.2021.101506
144. Wang X., Zhang J., Chen J., Ma Q., Fan S., Zhao T. // Chinese J. of Chemical Engineering. 2018. V. 26(4). P. 761–767. https://doi.org/10.1016/J.CJCHE.2017.10.013
145. Jiang F., Liu B., Geng S., Xu Y., Liu X. // Catalysis Science & Technology. 2018. V. 8(16). P. 4097–4107. https://doi.org/10.1039/C8CY00850G
146. Wang S., Zhang L., Zhang W., Wang P., Qin Z., Yan W., Dong M., Li J., Wang J., He L., Olsbye U., Fan W. // Chem. 2020. V. 6(12). P. 3344–3363. https://doi.org/10.1016/J.CHEMPR.2020.09.025
147. Guo L., Cui Y., Li H., Fang Y., Prasert R., Wu J., Yang G., Yoneyama Y., Tsubaki N. // Catalysis Communications. 2019. V. 130. Article 105759. P. https://doi.org/10.1016/J.CATCOM.2019.105759
148. Dang S., Gao P., Liu Z., Chen X., Yang C., Wang H., Zhong L., Li S., Sun Y. // J. of Catalysis. 2018. V. 364. P. 382–393. https://doi.org/10.1016/J.JCAT.2018.06.010
149. Kangvansura P., Chew L.M., Saengsui W., Santawaja P., Pooarporn Y., Muhler M., Schulz H., Worayingyong A. // Catalysis Today. 2016. V. 275. P. 59–65. https://doi.org/10.1016/J.CATTOD.2016.02.045
150. Исмагилов З.Р., Пармон В.Н. // Энергетический вестник, МЦУЭР Международный центр устойчивого развития под эгидой ЮНЕСКО. 2021. С. 54–74.
151. European Patent EP1373166, 2004.
152. Алексеев Е.С., Алентьев А.Ю., Белова А.С., Богдан В.И., Богдан Т.В., Быстрова А.В., Гафарова Э.Р., Голубева Е.Н., Гребенник Е.А., Громов О.И., Даванков В.А., Злотин С.Г., Киселев М.Г., Коклин А.Е., Кононевич Ю.Н., Лажко А.Э., Лунин В.В., Любимов С.Е., Мартьянов О.Н., Мишанин И.И., Музафаров А.М., Нестеров Н.С., Николаев А.Ю., Опарин Р.Д., Паренаго О.О., Паренаго О.Р., Покусаева Я.А., Ронова И.А., Соловьева А.Б., Темников М.Н., Тимашев П.С., Турова О.В., Филатова Е.В., Филиппов А.А., Чибиряев А.М., Шалыгин А.С. // Успехи химии. 2020. Т. 89. № 12. С. 1337–1427. https://doi.org/10.1070/RCR4932. /[Alekseev E.S., Alentiev A.Yu., Belova A.S., Bogdan V.I., Bogdan T.V., Bystrova A.V., Gafarova E.R., Golubeva E.N., Grebenik E.A., Gromov O.I., Davankov V.A., Zlotin S.G., Kiselev M.G., Koklin A.E., Kononevich Yu.N., Lazhko A.E., Lunin V.V., Lyubimov S.E., Martyanov O.N., Mishanin I.I., Muzafarov A.M., Nesterov N.S., Nikolaev A.Yu., Oparin R.D., Parenago O.O., Parenago O.P., Pokusaeva Ya.A., Ronova I.A, Solovieva A.B., Temnikov M.N., Timashev P.S., Turova O.V., Filatova E.V., Philippov A.A., Chibiryaev A.M., Shalygin A.S. Supercritical fluids in chemistry // RUSS CHEM REV. 2020. V. 89(12). P. 1337–1427. https://doi.org/10.1070/RCR4932
153. Jessop P., Ikariya T., Noyori R. // Nature. 1994. V. 368. P. 231–233. https://doi.org/10.1038/368231a0
154. Jessop P.G., Hsiao Y., Ikariya T., Noyori R. // J. Am. Chem. Soc. 1996. V. 118(2). P. 344–355. https://doi.org/10.1021/ja953097b
155. Preti D., Resta C., Squarcialupi S., Fachinetti G. // Angew. Chem. 2011. V. 123. P. 12759–12762. https://doi.org/10.1002/anie.201105481https://doi.org/10.1002/anie.201105481
156. Патент WO 2010149507, 2010.
157. Zhang Z., Hu S., Song J., Li W., Yang G., Han B. Hydrogenation of CO2 to Formic Acid Promoted by a Diamine-Functionalized Ionic Liquid // ChemSusChem. 2009. V. 2. P. 234 – 238. https://doi.org/10.1002/cssc.200800252
158. Andrushkevich T.V., Popova G.Y., Danilevich E.V. Zolotarskii I.A., Nakrokhin V.B., Nikoro T.A., Stompel S.I., Parmon V.N. // Catal. Ind. 2014. V. 6. P. 17–24. https://doi.org/10.1134/S2070050414010024
159. Wesselbaum S., Hintermair U., Leitner W. // Chem. Int. Ed. 2012. V. 51(34). P. 8585–8588. https://doi.org/10.1002/anie.201203185
160. Span R., Wagner W. // J. Phys. Chem. Ref. Data. 1996. V. 25. P. 1509–1596, https://doi.org/10.1063/1.555991.
161. Evdokimenko N.D., Kustov A.L., Kim K.O., Igonina M.S., Kustov L.M. // Mendeleev Commun. 2018. V. 28. P. 147–149. https://doi.org/10.1016/j.mencom.2018.03.012.
162. Gothe M.L., Pérez-Sanz F.J., Braga A.H., Borges L.R., Abreu T.F., Bazito R.C., Gonçalves R.V., Rossi L.M., Vidinha P. // Journal of CO2 Utilization. 2020. V. 40. Article 101195. https://doi.org/10.1016/j.jcou.2020.101195.
163. Покусаева Я.А. Гидрирование диоксида углерода на Fe-, Co- и Ni-содержащих катализаторах в газовой фазе и в сверхкритических условиях. Дис. … канд. хим. наук. На правах рукописи. М. 2020. 128 с.
164. Bogdan V.I., Pokusaeva Y.A., Koklin A.E., Savilov S.V., Chernyak S.A., Lunin V.V., L.M. Kustov V.V. // Energy Technol. 2019. V. 7. Article 1900174. https://doi.org/10.1002/ente.201900174
165. Chernyak S.A., Ivanov A.S., Stolbov D.N., Maksimov S.V., Maslakov K.I., Chernavskii P.A., Pokusaeva Y.A., Koklin A.E., Bogdan V.I., Savilov S.V. // Carbon. 2020. V. 168. P. 475–484. https://doi.org/10.1016/J.CARBON.2020.06.067
166. Tamaki Y., Ishitani O. // ACS Catal. 2017. V. 7. P. 3394–3409. https://doi.org/10.1021/acscatal.7b00440.
167. Kuramochi Y., Ishitani O., Ishida H. // Coord. Chem. Rev. 2018. V. 373. P. 333–356. https://doi.org/10.1016/j.ccr.2017.11.023
168. Sekizawa K., Maeda K., Domen K., Koike K., Ishitani O. // J. Am. Chem. Soc. 2013. V. 135. P. 4596–4599. https://doi.org/10.1021/ja311541a
169. Kuramochi Y., Ishitani O. // Frontiers in Chemistry. 2019. V.7. Article 259. https://doi.org/10.3389/fchem.2019.00259
170. Yamazaki Y., Onoda T., Ishikawa J., Furukawa S., Tanaka C., Utsugi T., Tsubomura T. // Frontiers in Chemistry. 2019. V. 7. Article 288. https://doi.org/10.3389/fchem.2019.00288
171. Fan W.K., Tahir M. // Chemical Engineering Journal. 2022. V. 427. Article 131617. https://doi.org/10.1016/j.cej.2021.131617
172. Laura Rotundo, Emanuele Azzi, Annamaria Deagostino, Claudio Garino, Luca Nencini, Emanuele Priola, Pierluigi Quagliotto, Riccardo Rocca, Roberto Gobetto, Nervi C. // Frontiers in Chemistry. 2019. V. 7. Article 417. P. 64–76. https://doi.org/10.3389/fchem.2019.00417
173. Fu H.-C., You F., Li H.-R., He L.-N. // Frontiers in Chemistry. 2019. V. 7. Article 525. https://doi.org/10.3389/fchem.2019.00525
174. Talukdar K., Issa A., Jurss J.W. // Frontiers in Chemistry. 2019. V. 7. Article 330. https://doi.org/10.3389/fchem.2019.00330
175. Igarashi R., Takeuchi R., Kubo K., Mizuta T., Kume S. // Frontiers in Chemistry. 2019. V. 7. Article 860. https://doi.org/10.3389/fchem.2019.00860.
176. Liu M., Yi Y., Wang L, Guo H., Bogaerts A. // Catalysts. 2019. V. 9. Article 275. https://doi.org/10.3390/catal9030275
177. Snoeckx R, Bogaerts A. // Chemical Society Reviews. 2017. V. 46. P. 5805–5863. https://doi.org/10.1039/C6CS00066E
Рецензия
Для цитирования:
Макарян И.А., Седов И.В., Савченко В.И. Каталитическое гидрирование СО2 как способ получения ценных химических продуктов. Катализ в промышленности. 2023;23(4):6-32. https://doi.org/10.18412/1816-0387-2023-4-6-32
For citation:
Makaryan I.A., Sedov I.V., Savchenko V.I. Catalytic hydrogenation of CO2 as a method for obtaining valuable chemical products. Kataliz v promyshlennosti. 2023;23(4):6-32. (In Russ.) https://doi.org/10.18412/1816-0387-2023-4-6-32