

Catalytic conversion of ethanol to aromatic hydrocarbons over zeolite-containing catalysts
https://doi.org/10.18412/1816-0387-2023-4-45-64
Abstract
The review considers and systematizes the results of studies on ethanol conversion to aromatic hydrocarbons (benzene, toluene, and xylenes) currently available in the literature. Features of the ethanol conversion over zeolite-containing catalysts and the mechanism of each step of its conversion to aromatic hydrocarbons are considered. The effect exerted by the composition of the zeolite-containing catalyst, composition of the raw material and conditions of the ethanol conversion processes is demonstrated. A modifier of the zeolite-containing catalyst is shown to affect the formation selectivity of aromatic hydrocarbons. This review may be interesting and useful for researchers of the zeolite-containing catalytic systems and processing of alcohols.
About the Authors
V. A. KovezaRussian Federation
O. V. Potapenko
Russian Federation
A. V. Lavrenov
Russian Federation
References
1. Хаджиев С.Н., Капустин В.М., Максимов А.Л., Чернышева Е.А., Кадиев Х.М., Герзелиев И.М., Колесниченко Н.В. // Нефтепереработка и нефтехимия. Научно-технические достижения и передовой опыт. 2014. №. 9. С. 3–10.
2. Alonso D.M., Bond J.Q., Dumesic J.A. // Green Chem. 2010. V. 12. № 9. P. 1493–1513. https://doi.org/10.1039/C004654J
3. Wu L., Moteki T., Gokhale A.A., Flaherty D.W., Toste F.D. // Chem. 2016. V. 1. № 1. P. 32–58. https://doi.org/10.1016/j.chempr.2016.05.002
4. Reshmy R., Paulose T., Philip E., Thomas D., Madhavan A., Sirohi R., Binod P., Awasthi M.K., Pandey A., Sindhu R. // Fuel. 2022. V. 308. P. 122056. https://doi.org/10.1016/j.fuel.2021.122056
5. Gerardy R., Debecker D.P., Estager J., Luis P., Monbaliu J.-C.M. // Chem. Rev. 2020. V. 120. № 15. P. 7219–7347. https://doi.org/10.1021/acs.chemrev.9b00846
6. Materials and Chemicals - BTX Market. 02.2020. Доступно в сети: https://www.reportsanddata.com/report-detail/btx-benzene-toluene-and-xylene-market (Дата обращения: 14.03.2023).
7. Rahimpour M.R., Jafari M., Iranshahi D. // Appl. Energy. 2013. V. 109. P. 79–93. https://doi.org/10.1016/j.apenergy.2013.03.080
8. Galkin M.V., Samec J.S. // ChemSusChem. 2016. V. 9. № 13. P. 1544–1558. https://doi.org/10.1002/cssc.201600237
9. Huang M., Xu J., Ma Z., Yang Y., Zhou B., Wu C., Ye J., Zhao C., Liu X., Chen D., Zhang W. // Fuel Process. Technol. 2021. V. 216. P. 106792. https://doi.org/10.1016/j.fuproc.2021.106792
10. Макеева Д.А., Куликов Л.А., Афокин М.И., Князева М.И., Караханов Э.А., Максимов А.Л. // Журнал прикладной химии. 2020. Т. 93. № 7. С. 915–937. https://doi.org/10.31857/S0044461820070014
11. Wang D., Xie Z., Porosoff M.D., Chen J.G. // Chem. 2021. V. 7. № 9. P. 2277–2311. https://doi.org/10.1016/j.chempr.2021.02.024
12. Gong Q., Fang T., Xie Y., Zhang R., Liu M., Barzagli F., Li J., Hu Z., Zhu Z. // Ind. Eng. Chem. Res. 2021. V. 60. № 4. P. 1633–1641. https://doi.org/10.1021/acs.iecr.0c06342
13. Hui L., Dong P., Ji D., Zhao X., Li C., Li G. // Kinetics and Catalysis. 2021. V. 62. № 3. P. 418-427. https://doi.org/10.1134/S0023158421030058
14. Li Z., Lepore A.W., Salazar M.F., Foo G.S., Davison B.H., Wu Z., Narula C.K. // Green Chem. 2017. V. 19. № 18. P. 4344–4352. https://doi.org/10.1039/C7GC01188A
15. Нетрусов А.И., Тепляков В.В., Цодиков М.В., Чистяков А.В, Жарова П.А., Шалыгин М.Г. // Нефтехимия. 2019. Т. 59. № 1. С. 14–27. https://doi.org/ 10.1134/S0028242119010118
16. Голубев К.Б, Беденко С.П., Будняк А.Д., Илолов А.М., Третьяков В.Ф., Талышинский Р.М., Максимов А.Л., Хаджиев С.Н. // Журнал прикладной химии. 2019. Т. 92. № 7. С. 854–859. https://doi.org/10.1134/S0044461819070053
17. Meisel S.L., McCullough J.P., Lechthaler C.H., Weisz P.B. // Chem. Technol. Chemtech. 1976. V. 6. № 2. P. 86.
18. Бровко Р.В., Сульман М.Г., Лакина Н.В., Долуда В.Ю. // Катализ в промышленности. 2021. Т. 21. № 5. С. 281–296. https://doi.org/10.18412/1816-0387-2021-5-281-296
19. Li T., Shoinkhorova T., Gascon J., Ruiz-Martinez J. //ACS Catal. 2021. V. 11. №. 13. P. 7780-7819. https://doi.org/10.1021/acscatal.1c01422
20. Tabassum N., Ali S.S. // Catal. Surv. Asia. 2021. P. 1–20. https://doi.org/10.1007/s10563-021-09348-2
21. Inaba M., Murata K., Saito M., Takahara I. // React. Kinet. Catal. Lett. 2006. V. 88. № 1. P. 135–141. https://doi.org/10.1007/s11144-006-0120-5
22. Rosales-Calderon O., Arantes V. // Biotechnol. Biofuels. 2019. V. 12. № 1. P. 1–58. https://doi.org/10.1186/s13068-019-1529-1
23. Silveira M.H.L., Morais A.R.C., da Costa Lopes A.M., Olekszyszen D.N., Dr. Bogel-Łukasik R., Andreaus J., Pereira Ramos L. // ChemSusChem. 2015. V. 8. № 20. P. 3366–3390. https://doi.org/10.1002/cssc.201500282
24. Gong J., Yue H., Zhao Y., Zhao S., Zhao L., Lv J., Wang S., Ma X. // J. Am. Chem. Soc. 2012. V. 134. № 34. P. 13922–13925. https://doi.org/10.1021/ja3034153
25. Wang L., Wang L., Zhang J., Liu X., Wang H., Zhang W., Yang Q., Ma J., Dong X., Yoo S.J., Kim JG., Meng X., Xiao FS. // Angew. Chem. Int. Ed. 2018. V. 57. № 21. P. 6104–6108. https://doi.org/10.1002/anie.201800729
26. Яковлева И.С., Банзаракцаева С.П., Овчинникова Е.В., Чумаченко В.А., Исупова Л.А. // Катализ в промышленности. 2016. № 1. С. 57-73. https://doi.org/10.18412/1816-0387-2016-1-57-73
27. Hulea V. // ACS Catal. 2018. V. 8. № 4. P. 3263–3279. https://doi.org/10.1021/acscatal.7b04294
28. Kozlowski J.T., Davis R.J. // ACS Catal. 2013. V. 3. № 7. P. 1588–1600. https://doi.org/10.1021/cs400292f
29. Restrepo-Flórez J.M., Maravelias C.T. // Energy Environ. Sci. 2021. V. 14. № 1. P. 493–506. https://doi.org/10.1039/D0EE02447C
30. Eagan N.M., Kumbhalkar M.D., Buchanan J.S., Dumesic J.A., Huber G.W. // Nat. Rev. Chem. 2019. V. 3. № 4. P. 223–249. https://doi.org/10.1038/s41570-019-0084-4
31. Qian Q., Ruiz-Martínez J., Mokhtar M., Asiri A.M., Al-Thabaiti S.A., Basahel S.N., Weckhuysen B.M. // Catal. Today. 2014. V. 226. P. 14–24. https://doi.org/10.1016/j.cattod.2013.09.056
32. US Patent US9809505B1, 2017.
33. US Patent US9062264B2, 2015.
34. US Patent US8822745B2, 2014.
35. US Patent US4046522A, 1977.
36. US Patent US20160168477A1, 2013.
37. US Patent US9533921B2, 2017.
38. US Patent US11352568B2, 2022.
39. US Patent US20170247617A1, 2017.
40. Svelle S., Joensen F., Nerlov J., Olsbye U., Lillerud K.-P., Kolboe S., Bjørgen M. // J. Am. Chem. Soc. 2006. V. 128. № 46. P. 14770–14771. https://doi.org/10.1021/ja065810a
41. Bjørgen M., Svelle S., Joensen F., Nerlov J., Kolboe S., Bonino F., Palumbo L., Bordiga S., Olsbye U. // J. Catal. 2007. V. 249. № 2. P. 195–207. https://doi.org/10.1016/j.jcat.2007.04.006
42. Olsbye U., Svelle S., Bjørgen M., Beato P., Janssens T.V.W., Joensen F., Bordiga S., Lillerud K.P. // Angew. Chem. Int. Ed. 2012. V. 51. № 24. P. 5810–5831. https://doi.org/10.1002/anie.201103657
43. Zeng S., Zhang W., Li J., Lin S., Xu S., Wei Y., Liu Z. // J. Catal. 2022. V. 413. P. 517–526. https://doi.org/10.1016/j.jcat.2022.07.002
44. Dahl I.M., Kolboe S. // J. Catal. 1994. V. 149. № 2. P. 458–464. https://doi.org/10.1006/jcat.1994.1312
45. Martínez-Espín J.S., De Wispelaere K., Janssens T.V.W., Svelle S., Lillerud K.P., Beato P., Van Speybroeck V., Olsbye U. // ACS Catal. 2017. V. 7. № 9. P. 5773–5780. https://doi.org/10.1021/acscatal.7b01643
46. Cesarini A., Mitchell S., Zichittella G., Agrachev M., Schmid S.P., Jeschke G., Pan Z., Bodi A., Hemberger P., Pérez-Ramírez J.: 7 // Nat. Catal. 2022. V. 5, № 7. P. 605–614. https://doi.org/10.1038/s41929-022-00808-0
47. Haw J.F., Song W., Marcus D.M., Nicholas J.B. // Acc. Chem. Res. 2003. V. 36. № 5. P. 317–326. https://doi.org/10.1021/ar020006o
48. Johansson R., Hruby S.L., Rass-Hansen J., Christensen C.H. // Catal. Lett. 2009. V. 127. № 1. P. 1–6. https://doi.org/10.1007/s10562-008-9711-2
49. Chowdhury A.D., Lucini Paioni A., Whiting G.T., Fu D., Baldus M., Weckhuysen B.M. // Angew. Chem. 2019. V. 131. № 12. P. 3948–3952. https://doi.org/10.1002/anie.201814268
50. Alexopoulos K., John M., Van der Borght K., Galvita V., Reyniers M.-F., Marin G.B. // J. Catal. 2016. V. 339. P. 173–185. https://doi.org/10.1016/j.jcat.2016.04.020
51. Batchu R., Galvita V.V., Alexopoulos K., Glazneva T.S., Poelman H., Reyniers M.-F., Marin G.B. // Catal. Today. 2020. V. 355. P. 822–831. https://doi.org/10.1016/j.cattod.2019.04.018
52. Zhou X., Wang C., Chu Y., Xu J., Wang Q., Qi G., Zhao X., Feng N., Deng F. // Nat. Commun. 2019. V. 10. № 1. P. 1–9. https://doi.org/10.1038/s41467-019-09956-7
53. Sousa Z.S., Veloso C.O., Henriques C.A., da Silva V.T. // J. Mol. Catal. Chem. 2016. V. 422. P. 266–274. https://doi.org/10.1016/j.molcata.2016.03.005
54. Štich I., Gale J.D., Terakura K., Payne M.C. // J. Am. Chem. Soc. American Chemical Society. 1999. V. 121. № 14. P. 3292–3302. https://doi.org/10.1021/ja983470q
55. Zhang W., Zhi Y., Huang J., Wu X., Zeng S., Xu S., Zheng A., Wei Y., Liu Z. // ACS Catal. 2019. V. 9. № 8. P. 7373–7379. https://doi.org/10.1021/acscatal.9b02487
56. Uslamin E.A., Saito H., Kosinov N., Pidko E., Sekine Y., Hensen E.J. // Catal. Sci. Technol. 2020. V. 10. № 9. P. 2774–2785. https://doi.org/10.1039/C9CY02108F
57. Yarulina I., Chowdhury A.D., Meirer F., Weckhuysen B.M., Gascon J. // Nat. Catal. 2018. V. 1. № 6. P. 398–411. https://doi.org/10.1038/s41929-018-0078-5
58. Hu M., Wang C., Gao X., Chu Y., Qi G., Wang Q., Xu G., Xu J., Deng F. // ACS Catal. 2020. V. 10. № 7. P. 4299–4305. https://doi.org/10.1021/acscatal.0c00838
59. Zeng S., Li J., Wang N., Zhang W., Wei Y., Liu Z., Xu S. // Energy Fuels. 2021. V. 35. № 15. P. 12319–12328. https://doi.org/10.1021/acs.energyfuels.1c02151
60. Quann R.J., Green L.A., Tabak S.A., Krambeck F.J. // Ind. Eng. Chem. Res. 1988. V. 27. № 4. P. 565–570. https://doi.org/10.1021/ie00076a006
61. Viswanadham N., Saxena S.K., Kumar J., Sreenivasulu P., Nandan D. // Fuel. 2012. V. 95. P. 298–304. https://doi.org/10.1016/j.fuel.2011.08.058
62. Niu X., Nie X., Yang C., Chen J.G. // Catal. Sci. Technol. 2020. V. 10. № 6. P. 1881–1888. https://doi.org/10.1039/C9CY02589H
63. Toch K., Thybaut J.W., Vandegehuchte B.D., Narasimhan C.S.L., Domokos L., Marin G.B. // Appl. Catal. Gen. 2012. V. 425–426. P. 130–144. https://doi.org/10.1016/j.apcata.2012.03.011
64. Bocus M., Vanduyfhuys L., De Proft F., Weckhuysen B.M., Van Speybroeck V. // JACS Au. 2022. V. 2. № 2. P. 502–514. https://doi.org/10.1021/jacsau.1c00544
65. Chowdhury A.D., Houben K., Whiting G.T., Chung S.-H., Baldus M., Weckhuysen B.M. // Nat. Catal. 2018. V. 1. № 1. P. 23–31. https://doi.org/10.1038/s41929-017-0002-4
66. Bjørgen M., Olsbye U., Kolboe S. // J. Catal. 2003. V. 215. № 1. P. 30–44. https://doi.org/10.1016/S0021-9517(02)00050-7
67. Zhang W., Zhang M., Xu S., Gao S., Wei Y., Liu Z. // ACS Catal. 2020. V. 10. № 8. С. 4510–4516. https://doi.org/10.1021/acscatal.0c00799
68. Haw J.F., Nicholas J.B., Song W., Deng F., Wang Z., Xu T., Heneghan C.S. // J. Am. Chem. Soc. 2000. V. 122. № 19. P. 4763–4775. https://doi.org/10.1021/ja994103x
69. Madeira F.F., Vezin H., Gnep N., Magnoux P., Maury S., Cadran N. // ACS Catal. 2011. V. 1. № 4. P. 417–424. https://doi.org/10.1021/cs2000686
70. Brogaard R.Y., Weckhuysen B.M., Nørskov J.K. // J. Catal. 2013. V. 300. P. 235–241. https://doi.org/10.1016/j.jcat.2013.01.009
71. Talukdar A.K., Bhattacharyya K.G., Sivasanker S. // Appl. Catal. Gen. 1997. V. 148. № 2. P. 357–371. https://doi.org/10.1016/S0926-860X(96)00240-2
72. Madeira F.F., Gnep N.S., Magnoux P., Maury S., Cadran N. // Appl. Catal. Gen. 2009. V. 367. № 1. P. 39–46. https://doi.org/10.1016/j.apcata.2009.07.033
73. Schulz J., Bandermann F. // Chem. Eng. Technol. Ind. Chem.-Plant Equip.-Process Eng.-Biotechnol. 1994. V. 17. № 3. P. 179–186. https://doi.org/10.1002/ceat.270170306
74. Phung T.K., Busca G. // Appl. Catal. Gen. 2015. V. 504. P. 151–157. https://doi.org/10.1016/j.apcata.2014.11.031
75. Phung T.K., Radikapratama R., Garbarino G., Lagazzo A., Riani P., Busca G. // Fuel Process. Technol. 2015. V. 137. P. 290–297. https://doi.org/10.1016/j.fuproc.2015.03.012
76. Gil-Horán R.H., Chavarría-Hernández J.C., Quintana-Owen P., Gutiérrez-Alejandre A. // Top. Catal. 2020. V. 63. № 5. P. 414–427. https://doi.org/10.1007/s11244-020-01229-8
77. Song Y., Zhang L., Li G., Shang Y., Zhao X., Ma T., Zhang L., Zhai Y., Gong Y., Xu J., others // Fuel Process. Technol. 2017. V. 168. P. 105–115. https://doi.org/10.1016/j.fuproc.2017.08.020
78. Chaudhuri S., Halik C., Lercher J. // J. Mol. Catal. 1990. V. 62. № 3. P. 289–295. https://doi.org/10.1016/0304-5102(90)85224-6
79. Makarfi Y.I., Yakimova M.S., Lermontov A.S., Erofeev V.I., Koval L.M., Tretiyakov V.F. // Chem. Eng. J. 2009. V. 154. № 1–3. P. 396–400. https://doi.org/10.1016/j.cej.2009.06.001
80. Zhang N., Mao D., Zhai X. // Fuel Process. Technol. 2017. V. 167. P. 50–60. https://doi.org/10.1016/j.fuproc.2017.06.028
81. Oudejans J., Van Den Oosterkamp P., Van Bekkum H. // Appl. Catal. 1982. V. 3. № 2. P. 109–115. https://doi.org/10.1016/0166-9834(82)80084-5
82. Choudhary V., Sansare S. // Appl. Catal. 1984. V. 10. № 2. P. 147–153. https://doi.org/10.1016/0166-9834(84)80099-8
83. Fernandes D.S., Veloso C.O., Henriques C.A. // Catal. Lett. 2020. V. 150. № 3. P. 738–752. https://doi.org/10.1007/s10562-019-02954-w
84. Aguayo A.T., Gayubo A.G., Atutxa A., Olazar M., Bilbao J. // Ind. Eng. Chem. Res. 2002. V. 41. № 17. P. 4216–4224. https://doi.org/10.1021/ie020068i
85. Aguayo A.T., Gayubo A.G., Tarrío A.M., Atutxa A., Bilbao J. // J. Chem. Technol. Biotechnol. Int. Res. Process Environ. Clean Technol. 2002. V. 77. № 2. P. 211–216. https://doi.org/10.1002/jctb.540
86. Gayubo A.G., Tarrío A.M., Aguayo A.T., Olazar M., Bilbao J. // Ind. Eng. Chem. Res. 2001. V. 40. № 16. P. 3467–3474. https://doi.org/10.1021/ie001115e
87. Costa E., Uguina A., Aguado J., Hernandez P.J. // Ind. Eng. Chem. Process Des. Dev. 1985. V. 24. № 2. P. 239–244. https://doi.org/10.1021/i200029a003
88. Madeira F.F., Tayeb K.B., Pinard L., Vezin H., Maury S., Cadran N. // Appl. Catal. Gen. 2012. V. 443. P. 171–180. https://doi.org/10.1016/j.apcata.2012.07.037
89. Ramasamy K.K., Wang Y. // Catal. Today. 2014. V. 237. P. 89–99. https://doi.org/10.1016/j.cattod.2014.02.044
90. Голубев К.Б., Беденко С.П., Будняк А.Д., Илолов А.М., Третьяков В.Ф., Талышинский Р.М., Максимов А.Л., Хаджиев С.Н. // Журнал прикладной химии. 2019. Т. 92. №. 7. С. 854–859. https://doi.org/10.1134/S0044461819070053
91. Meng L., Zhu X., Wannapakdee W., Pestman R., Goesten M.G., Gao L., van Hoof A.J.F., Hensen E.J.M. // J. Catal. 2018. V. 361. P. 135–142. https://doi.org/10.1016/j.jcat.2018.02.032
92. Ni Y., Sun A., Wu X., Hai G., Hu J., Li T., Li G. // Microporous Mesoporous Mater. 2011. V. 143. № 2. P. 435–442. https://doi.org/10.1016/j.micromeso.2011.03.029
93. Yuk S.F., Lee M.-S., Collinge G., Zhang J., Padmaperuma A.B., Li Z., Polo-Garzon F., Wu Z., Glezakou V.-A., Rousseau R. // J. Phys. Chem. C. American Chemical Society, 2020. V. 124. № 52. P. 28437–28447. https://doi.org/10.1021/acs.jpcc.0c05585
94. Zhao S., Kim K.D., Wang L., Ryoo R., Huang J. // Adv. Mater. Interfaces. 2021. V. 8. № 4. P. 2001846. https://doi.org/10.1002/admi.202001846
95. Wei Z., Chen L., Cao Q., Wen Z., Zhou Z., Xu Y., Zhu X. // Fuel Process. Technol. 2017. V. 162. P. 66–77. https://doi.org/10.1016/j.fuproc.2017.03.026
96. Arora S.S., Nieskens D.L.S., Malek A., Bhan A.: 9 // Nat. Catal. Nature Publishing Group, 2018. V. 1. № 9. P. 666–672. https://doi.org/10.1038/s41929-018-0125-2
97. Yarulina I., De Wispelaere K., Bailleul S., Goetze J., Radersma M., Abou-Hamad E., Vollmer I., Goesten M., Mezari B., Hensen E.J.M., Martínez-Espín J.S., Morten M., Mitchell S., Perez-Ramirez J., Olsbye U., Weckhuysen B.M., Van Speybroeck V., Kapteijn F., Gascon J.: 8 // Nat. Chem. Nature Publishing Group, 2018. V. 10, № 8. P. 804–812. https://doi.org/10.1038/s41557-018-0081-0
98. Liu C., Uslamin E.A., Khramenkova E., Sireci E., Ouwehand L.T.L.J., Ganapathy S., Kapteijn F., Pidko E.A. // ACS Catal. American Chemical Society, 2022. V. 12. № 5. P. 3189–3200. https://doi.org/10.1021/acscatal.1c05481
99. Liu D., Liu Y., Goh E.Y.L., Chu C.J.Y., Gwie C.G., Chang J., Borgna A. // Appl. Catal. Gen. Elsevier, 2016. V. 523. P. 118–129. https://doi.org/10.1016/j.apcata.2016.05.030
100. Huangfu J., Mao D., Zhai X., Guo Q. // Appl. Catal. Gen. 2016. V. 520. P. 99–104. https://doi.org/10.1016/j.apcata.2016.04.016
101. Barthos R., Széchenyi A., Solymosi F. // J. Phys. Chem. B. 2006. V. 110. № 43. P. 21816–21825. https://doi.org/10.1021/jp063522v
Review
For citations:
Koveza V.A., Potapenko O.V., Lavrenov A.V. Catalytic conversion of ethanol to aromatic hydrocarbons over zeolite-containing catalysts. Kataliz v promyshlennosti. 2023;23(4):45-64. (In Russ.) https://doi.org/10.18412/1816-0387-2023-4-45-64