

Physicochemical and catalytic properties of bifunctional catalysts with different content of ZSM-22 zeolite in hydrodeoxygenation of sunflower oil
https://doi.org/10.18412/1816-0387-2023-4-64-74
Abstract
The effect exerted by the content of ZSM-22 zeolite (15–70 wt.%) in the support on physicochemical properties of Pt/ZSM-22-Al2O3 catalysts was investigated. The study revealed the dependence of the yield and composition of the hydrodeoxygenation products of sunflower oil obtained over these catalysts on temperature (310–340 °С), pressure (3–5 MPa) and mass flow rate (0.8–3 h–1). The possibility of complete hydrodeoxygenation of sunflower oil to obtain hydrocarbons C5+ containing up to 72 % of isoparaffins with the yield of 75–79 wt.% was demonstrated.
About the Authors
A. A. NepomnyashchiyRussian Federation
E. R. Saibulina
Russian Federation
E. A. Buluchevskiy
Russian Federation
T. I. Gulyaeva
Russian Federation
R. M. Mironenko
Russian Federation
O. V. Potapenko
Russian Federation
A. V. Lavrenov
Russian Federation
References
1. Huber G.W., Iborra S., Corma A. // Chem. Rev. 2006. V. 106. № 9. P. 4044–4098. DOI: 10.1021/cr068360d.
2. Sivasamy A., Cheah K.Y., Fornasiero P., Kemausuor F., Zinoviev S., Miertus S. // ChemSusChem. 2009. V. 2. № 4. P. 278–300. DOI: 10.1002/cssc.200800253.
3. Choudhary T.V., Phillips C.B. // Appl. Catal. A: Gen. 2011. V. 397. № 1‒2. P. 1–12. DOI: 10.1016/j.apcata.2011.02.025.
4. Khan S., Andrew N.K.L., Khan M.Q., Faisal A., Wan M.A., Wan D., Muhamad F.A.P. // J. Anal. Appl. Pyrolysis. 2019. V. 40. P. 1‒24. DOI: 10.1016/j.jaap.2019.03.005.
5. Douvartzides S.L, Charisiou N. D., Papageridis K. N., Goula M. A. // Energies. 2019. V. 12. № 5. P. 809‒850. DOI: 10.3390/en12050809.
6. Smirnova M.Y., Kikhtyanin O.V., Rubanov A.E., Trusov L.I., Echevskii G.V. // Catal. Ind. 2013. V. 5. № 3. P. 253–259. DOI: 10.1134/S2070050413030112.
7. Pérez-Cisneros E. S., Sales-Cruz M., Ricardo Lobo-Oehmichen, Viveros-García T. // Comput. Chem. Eng. 2017. V. 105. P. 105–122. DOI: 10.1016/j.compchemeng.2017.01.018.
8. Herskowitz M., Landau M.V., Reizner Y., Berger D. // Fuel. 2013. V. 111. P. 157–164. DOI: 10.1016/j.fuel.2013.04.044.
9. Wang C., Liu Q., Liu X., L. Yan, Luo C., Wang L., Wang B., Tian Z. // Chinese J. Catal. 2013. V. 34. № 6. P. 1128–1138. DOI: 10.1016/S1872-2067(11)60524-X.
10. Wang C., Tian Z., Wang L., Xu R., Liu Q., Qu W. // ChemSusChem. 2012. V. 5. P. 1974–1983. DOI : 10.1002/cssc.201200219.
11. Wang C., Liu Q., Song J., Li W., Li P., Xu R. // Catal. Today. 2014. V. 234. P. 153–160. DOI: 10.1016/j.cattod.2014.02.011.
12. Zhang M., Chen Y., Wang L., Zhang Q., Tsang C. W., Liang C. // Ind. Eng. Chem. Res. 2016. V. 55. № 21. P. 6069–6078. DOI: 10.1021/acs.iecr.6b01163.
13. Martens J.A., Verboekend D., Thomas K., Vanbutsele G., Pérez-Ramírez J., Gilson J.-P. // Catal. Today. 2013. V. 218‒219. P. 135‒142. DOI: 10.1016/j.cattod.2013.03.041.
14. Hancsók J., Krár M., Magyar S., Boda L., Holló A., Kalló D. // Microporous Mesoporous Mater. 2007. V. 101. № 1‒2. P. 148–152. DOI: 10.1016/j.micromeso.2006.12.012.
15. Nepomnyashchiy A.A., Buluchevskiy E.A., Lavrenov A.V., Yurpalov V.L., Gulyaeva, Leont’eva N.N, T.I. // Russ. J. Appl. Chem. 2017. V. 90. № 12. P. 1944–1952. DOI: 10.1134/S1070427217120084.
16. Parmar S., Pant K. K., John M., Kumar K., Pai S. M., Newalkar B. L. // Energy Fuels. 2015. V. 29. № 2. P. 1066–1075. DOI: 10.1021/ef502591q.
17. Chi K., Zhao Z., Tian Z., Hu S., Yan L., Li T., Wang B., Meng X., Gao S., Tan M., Liu Y. // Petrol. Sci. 2013. V. 10. № 2. P. 242–250. DOI: 10.1007/s12182-013-0273-6.
18. Liu S., Ren J., Zhu S., Zhang H., Lv E., Xu J., Li Y.-W. // J. Catal. 2015. V. 330. P. 485–496. DOI: 10.1016/j.jcat.2015.07.027.
19. Liu S., Ren J., Zhang H., Lv E., Yang Y., Li Y.-W. // J. Catal. 2016. V. 335. P. 11–23. DOI: 10.1016/j.jcat.2015.12.009.
20. Kim S.K., Han J.Y., Lee H.S., Yum T., Kim Y., Kim J. // Appl. Energy. 2014. V. 116(C). P. 199‒205. DOI: 10.1016/j.apenergy.2013.11.062.
21. Alcalá R., Mavrikakis M., Dumesic J.A. // J Catal. 2003. V. 218. P. 178–190. DOI: 10.1016/S0021-9517(03)00090-3.
22. Chen N., Gong S., Shirai H., Watanabe T., Qian E. W. // Appl. Catal. A: Gen. 2013. V. 466. P. 105‒115. DOI: 10.1016/j.apcata.2013.06.034.
23. Sankaranarayanan T. M., Banu M., Pandurangan A., Sivasanker S. // Bioresource Technol. 2011. V. 102. № 22. P. 10717–10723. DOI: 10.1016/j.biortech.2011.08.127.
24. Anand M., Sinha A.K. // Bioresource Technol. 2012. V. 126. P. 148–155. DOI: 10.1016/j.biortech.2012.08.105.
25. Guzman A., Torres J. E., Prada L. P., Nuñez M. L. // Catal. Today. 2010. V. 156. № 1–2. P. 38–43. DOI: 10.1016/j.cattod.2009.11.015.
Review
For citations:
Nepomnyashchiy A.A., Saibulina E.R., Buluchevskiy E.A., Gulyaeva T.I., Mironenko R.M., Potapenko O.V., Lavrenov A.V. Physicochemical and catalytic properties of bifunctional catalysts with different content of ZSM-22 zeolite in hydrodeoxygenation of sunflower oil. Kataliz v promyshlennosti. 2023;23(4):64-74. (In Russ.) https://doi.org/10.18412/1816-0387-2023-4-64-74