Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Physicochemical and catalytic properties of bifunctional catalysts with different content of ZSM-22 zeolite in hydrodeoxygenation of sunflower oil

https://doi.org/10.18412/1816-0387-2023-4-64-74

Abstract

The effect exerted by the content of ZSM-22 zeolite (15–70 wt.%) in the support on physicochemical properties of Pt/ZSM-22-Al2O3 catalysts was investigated. The study revealed the dependence of the yield and composition of the hydrodeoxygenation products of sunflower oil obtained over these catalysts on temperature (310–340 °С), pressure (3–5 MPa) and mass flow rate (0.8–3 h–1). The possibility of complete hydrodeoxygenation of sunflower oil to obtain hydrocarbons C5+ containing up to 72 % of isoparaffins with the yield of 75–79 wt.% was demonstrated.

About the Authors

A. A. Nepomnyashchiy
Center of New Chemical Technologies BIC SB RAS, Omsk
Russian Federation


E. R. Saibulina
Center of New Chemical Technologies BIC SB RAS, Omsk
Russian Federation


E. A. Buluchevskiy
Center of New Chemical Technologies BIC SB RAS, Omsk
Russian Federation


T. I. Gulyaeva
Center of New Chemical Technologies BIC SB RAS, Omsk
Russian Federation


R. M. Mironenko
Center of New Chemical Technologies BIC SB RAS, Omsk
Russian Federation


O. V. Potapenko
Center of New Chemical Technologies BIC SB RAS, Omsk
Russian Federation


A. V. Lavrenov
Center of New Chemical Technologies BIC SB RAS, Omsk
Russian Federation


References

1. Huber G.W., Iborra S., Corma A. // Chem. Rev. 2006. V. 106. № 9. P. 4044–4098. DOI: 10.1021/cr068360d.

2. Sivasamy A., Cheah K.Y., Fornasiero P., Kemausuor F., Zinoviev S., Miertus S. // ChemSusChem. 2009. V. 2. № 4. P. 278–300. DOI: 10.1002/cssc.200800253.

3. Choudhary T.V., Phillips C.B. // Appl. Catal. A: Gen. 2011. V. 397. № 1‒2. P. 1–12. DOI: 10.1016/j.apcata.2011.02.025.

4. Khan S., Andrew N.K.L., Khan M.Q., Faisal A., Wan M.A., Wan D., Muhamad F.A.P. // J. Anal. Appl. Pyrolysis. 2019. V. 40. P. 1‒24. DOI: 10.1016/j.jaap.2019.03.005.

5. Douvartzides S.L, Charisiou N. D., Papageridis K. N., Goula M. A. // Energies. 2019. V. 12. № 5. P. 809‒850. DOI: 10.3390/en12050809.

6. Smirnova M.Y., Kikhtyanin O.V., Rubanov A.E., Trusov L.I., Echevskii G.V. // Catal. Ind. 2013. V. 5. № 3. P. 253–259. DOI: 10.1134/S2070050413030112.

7. Pérez-Cisneros E. S., Sales-Cruz M., Ricardo Lobo-Oehmichen, Viveros-García T. // Comput. Chem. Eng. 2017. V. 105. P. 105–122. DOI: 10.1016/j.compchemeng.2017.01.018.

8. Herskowitz M., Landau M.V., Reizner Y., Berger D. // Fuel. 2013. V. 111. P. 157–164. DOI: 10.1016/j.fuel.2013.04.044.

9. Wang C., Liu Q., Liu X., L. Yan, Luo C., Wang L., Wang B., Tian Z. // Chinese J. Catal. 2013. V. 34. № 6. P. 1128–1138. DOI: 10.1016/S1872-2067(11)60524-X.

10. Wang C., Tian Z., Wang L., Xu R., Liu Q., Qu W. // ChemSusChem. 2012. V. 5. P. 1974–1983. DOI : 10.1002/cssc.201200219.

11. Wang C., Liu Q., Song J., Li W., Li P., Xu R. // Catal. Today. 2014. V. 234. P. 153–160. DOI: 10.1016/j.cattod.2014.02.011.

12. Zhang M., Chen Y., Wang L., Zhang Q., Tsang C. W., Liang C. // Ind. Eng. Chem. Res. 2016. V. 55. № 21. P. 6069–6078. DOI: 10.1021/acs.iecr.6b01163.

13. Martens J.A., Verboekend D., Thomas K., Vanbutsele G., Pérez-Ramírez J., Gilson J.-P. // Catal. Today. 2013. V. 218‒219. P. 135‒142. DOI: 10.1016/j.cattod.2013.03.041.

14. Hancsók J., Krár M., Magyar S., Boda L., Holló A., Kalló D. // Microporous Mesoporous Mater. 2007. V. 101. № 1‒2. P. 148–152. DOI: 10.1016/j.micromeso.2006.12.012.

15. Nepomnyashchiy A.A., Buluchevskiy E.A., Lavrenov A.V., Yurpalov V.L., Gulyaeva, Leont’eva N.N, T.I. // Russ. J. Appl. Chem. 2017. V. 90. № 12. P. 1944–1952. DOI: 10.1134/S1070427217120084.

16. Parmar S., Pant K. K., John M., Kumar K., Pai S. M., Newalkar B. L. // Energy Fuels. 2015. V. 29. № 2. P. 1066–1075. DOI: 10.1021/ef502591q.

17. Chi K., Zhao Z., Tian Z., Hu S., Yan L., Li T., Wang B., Meng X., Gao S., Tan M., Liu Y. // Petrol. Sci. 2013. V. 10. № 2. P. 242–250. DOI: 10.1007/s12182-013-0273-6.

18. Liu S., Ren J., Zhu S., Zhang H., Lv E., Xu J., Li Y.-W. // J. Catal. 2015. V. 330. P. 485–496. DOI: 10.1016/j.jcat.2015.07.027.

19. Liu S., Ren J., Zhang H., Lv E., Yang Y., Li Y.-W. // J. Catal. 2016. V. 335. P. 11–23. DOI: 10.1016/j.jcat.2015.12.009.

20. Kim S.K., Han J.Y., Lee H.S., Yum T., Kim Y., Kim J. // Appl. Energy. 2014. V. 116(C). P. 199‒205. DOI: 10.1016/j.apenergy.2013.11.062.

21. Alcalá R., Mavrikakis M., Dumesic J.A. // J Catal. 2003. V. 218. P. 178–190. DOI: 10.1016/S0021-9517(03)00090-3.

22. Chen N., Gong S., Shirai H., Watanabe T., Qian E. W. // Appl. Catal. A: Gen. 2013. V. 466. P. 105‒115. DOI: 10.1016/j.apcata.2013.06.034.

23. Sankaranarayanan T. M., Banu M., Pandurangan A., Sivasanker S. // Bioresource Technol. 2011. V. 102. № 22. P. 10717–10723. DOI: 10.1016/j.biortech.2011.08.127.

24. Anand M., Sinha A.K. // Bioresource Technol. 2012. V. 126. P. 148–155. DOI: 10.1016/j.biortech.2012.08.105.

25. Guzman A., Torres J. E., Prada L. P., Nuñez M. L. // Catal. Today. 2010. V. 156. № 1–2. P. 38–43. DOI: 10.1016/j.cattod.2009.11.015.


Review

For citations:


Nepomnyashchiy A.A., Saibulina E.R., Buluchevskiy E.A., Gulyaeva T.I., Mironenko R.M., Potapenko O.V., Lavrenov A.V. Physicochemical and catalytic properties of bifunctional catalysts with different content of ZSM-22 zeolite in hydrodeoxygenation of sunflower oil. Kataliz v promyshlennosti. 2023;23(4):64-74. (In Russ.) https://doi.org/10.18412/1816-0387-2023-4-64-74

Views: 350


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)