Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Simultaneous deoxygenation and isomerization of fatty acid triglycerides of sunflower oil over Pt/Al2O3-zeolite catalysts

https://doi.org/10.18412/1816-0387-2023-5-25-34

Abstract

The effect of the zeolite type (SAPO-11, ZSM-22, ZSM-23 and ZSM-12) in the support (the zeolite to Al2О3 ratio of 30 : 70) on physicochemical properties of Pt/Al2О3-zeolite catalysts as well as on the yield and composition of the products of sunflower oil hydrodeoxygenation over these catalysts was studied. The possibility of complete hydrodeoxygenation of sunflower oil at temperatures 320–350 °C, pressure 4 MPa, and mass flow rate 1 h–1 with the yield of liquid products 75–82 % was demonstrated. The fraction of isoalkanes and the yield of products from direct hydrodeoxygenation increase with the concentration of Broensted acid sites in the catalyst in the following series: 1%Pt/Al2O3-ZSM-22 < < 1%Pt/Al2O3-ZSM-12 < 1%Pt/Al2O3-ZSM-23 < 1%Pt/Al2O3-SAPO-11.

About the Authors

A. A. Nepomnyashchiy
Center of New Chemical Technologies BIC SB RAS, Omsk
Russian Federation


E. R. Saibulina
Center of New Chemical Technologies BIC SB RAS, Omsk
Russian Federation


E. A. Buluchevskiy
Center of New Chemical Technologies BIC SB RAS, Omsk
Russian Federation


T. I. Gulyaeva
Center of New Chemical Technologies BIC SB RAS, Omsk
Russian Federation


V. L. Yurpalov
Center of New Chemical Technologies BIC SB RAS, Omsk
Russian Federation


R. M. Mironenko
Center of New Chemical Technologies BIC SB RAS, Omsk
Russian Federation


O. V. Potapenko
Center of New Chemical Technologies BIC SB RAS, Omsk
Russian Federation


A. V. Lavrenov
Center of New Chemical Technologies BIC SB RAS, Omsk
Russian Federation


References

1. Verma D., Rana B.S., Kumar R., Sibi M.G., Sinha A.K. // Appl. Catal. A: Gen. 2015. V. 490. № 1. P. 108—116. DOI: 10.1016/j.apcata.2014.11.007.

2. Alalwan H.A., Alminshid A.H., Aljaafari H.A.S. // Renew. Energy Focus. 2019. V. 28. P. 127—139. DOI: 10.1016/j.ref.2018.12.006.

3. Douvartzides S.L., Charisiou N.D., Papageridis K.N., Goula M.A. // Energies. 2019. V. 12. № 5. 809. DOI: 10.3390/en12050809.

4. Khan S., Andrew N.K.L., Khan M.Q., Faisal A., Wan M.A., Wan D., Muhamad F.A.P. // J. Anal. Appl. Pyrolysis. 2019. V. 140. P. 1—24. DOI: 10.1016/j.jaap.2019.03.005.

5. Smirnova M.Y., Kikhtyanin O.V., Rubanov A.E., Trusov L.I., Echevskii G.V. // Catal. Ind. 2013. V. 5. № 3. P. 253—259. DOI:10.1134/S2070050413030112.

6. Pérez-Cisneros E.S., Sales-Cruz M., Ricardo Lobo-Oehmichen, Viveros-García T. // Comput. Chem. Eng. 2017. V. 105. P. 105—122. DOI: 10.1016/j.compchemeng.2017.01.018.

7. Pérez W., Marína J., Ríoa J., Peñab J., Riosa L. // Fuel. 2017. V. 209. P. 442—448. DOI: 10.1016/j.fuel.2017.08.013.

8. Zhang M., Chen Y., Wang L., Zhang Q., Tsang C. W., Liang C. // Ind. Eng. Chem. Res. 2016. V. 55. № 21. P. 6069—6078. DOI:10.1021/acs.iecr.6b01163.

9. Herskowitz M., Landau M.V., Reizner Y., Berger D. // Fuel. 2013. V. 111. P. 157—164. DOI: 10.1016/j.fuel.2013.04.044.

10. Liu Q., Zuo H., Zhang Q., Wang T., Ma L. // Chin. J. Catal. 2014. V. 35. № 5. P. 748—756. DOI: 10.1016/S1872-2067(12)60710-4.

11. Wang C., Tian Z., Wang L., Xu R., Liu Q., Qu W. // Chem-SusChem. 2012. V. 5. P. 1974—1983. DOI: 10.1002/cssc.201200219.

12. Kikhtyanin O.V., Rubanov A.E., Ayupov A.B., Echevsky G.V. // Fuel. 2010. V. 89. P. 3085—3092. DOI: 10.1016/j.fuel.2010.05.033.

13. Kubička D., Bejblová M., Vlk J. // Top. Catal. 2010. V. 53. № 3—4. P. 168—178. DOI: 10.1007/s11244-009-9421-z.

14. Duan J., Han J., Sun H., Chen P., Lou H., Zheng X. // Catal. Commun. 2012. V. 17. P. 76—80. DOI: 10.1016/j.catcom.2011.10.009.

15. Zarchin R., Rabaev M., Vidruk-Nehemya R., Landau M.V., Herskowitz M. // Fuel. 2015. V. 139. P. 684—691. DOI: 10.1016/j.fuel.2014.09.053.

16. Sousa F.P., Noemí Silva L., B. de Rezende D., A. de Oliveira L.C., Pasa V.M.D. // Fuel. 2018. V. 223. P. 149—156. DOI:10.1016/j.fuel.2018.03.020.

17. Janampelli S., Darbha S. // Catal. Today. 2018. V. 309. P. 219—226. DOI: 10.1016/j.cattod.2017.06.030.

18. Janampelli S., Darbha S. // Energy Fuels. 2018. V. 32. № 12. P. 12630—12643. DOI: 10.1021/acs.energyfuels.8b03588.

19. Mehla S., Krishnamurthy K.R., Viswanathan B., John M., Niwate Y., Kishore Kumar S.A., Pai S.M., Newalkar B.L. // Microporous Mesoporous Mater. 2013. V. 177. P. 120—126. DOI:10.1016/J.MICROMESO.2013.05.001.

20. Zuo H., Liu Q., Wang T., Ma L., Zhang Q., Zhang Q. // Energy Fuels. 2012. V. 26. № 6. P. 3747—3755. DOI: 10.1021/ef300063b.

21. Pedrosa Garrido A.M., Souza M.J.B., Silva A.O.S., Melo D.M.A., Araujo A.S. // Catal. Commun. 2006. V. 10. P. 791-796. DOI:10.1016/j.catcom.2006.02.012.

22. Mehla S., Krishnamurthy K.R., Viswanathan B., Jolm M., Ni wate Y., Kishore Kumar S.A., Pai Sh. M., Newalkar Bh.L. // Microporous Mesoporous Mater. 2013. V. 177. P. 120-126. DOI:10.1016/j.micromeso.2013.05.001.

23. Deldari H. // Appl. Catal. A: Gen. 2005. V. 293. Р. 1—10. DOI:10.1016/j.apcata.2005.07.008.

24. Rabaev M., Landau M.V., Vidruk-Nehemya R., Goldbourt A., Herskowitz M. // J. Catal. 2015. V. 332. P. 164—176. DOI:10.1016/j.jcat.2015.10.005.

25. Wang C., Liu Q., Liu X., L. Yan, Luo C., Wang L., Wang B., Tian Z. // Chin. J. Catal. 2013. V. 34. № 6. P. 1128—1138. DOI:10.1016/S1872-2067(11)60524-X.

26. Smirnova M.Y., Kikhtyanin O.V., Smirnov M.Y., Kalinkin A.V., Titkov A.I., Ayupov A.B. // Appl. Catal. A: Gen. 2015. V. 505. P. 524—531. DOI: 10.1016/j.apcata.2015.06.019.

27. Wang C., Liu Q., Song J., Li W., Li P., Xu R. // Catal. Today. 2014. V. 234. P. 153—160. DOI: 10.1016/j.cattod.2014.02.011.

28. Nepomnyashchiy A.A., Buluchevskiy E.A., Lavrenov A.V., Yurpalov V.L., Gulyaeva T.I., Leont’eva N.N. // Russ. J. Appl. Chem. 2017. V. 90. № 12. P. 1944—1952. DOI: 10.1134/S1070427217120084.

29. Liu Y., Cui X., Han L., Yu Z., Liu X. // Microporous Mesoporous Mater. 2014. V. 198. P. 230—235. DOI: 10.1016/j.micromeso.2014.07.046.

30. Liu Y., Xu L., Lv Y., Liu X. // J. Colloid Interface Sci. 2016. V. 479. P. 55—63. DOI: 10.1016/j.jcis.2016.06.045.

31. Chi K., Zhao Z., Tian Z., Hu S., Yan L., Li T., Wang B., Meng X., Gao S., Tan M., Liu Y. // Petrol. Sci. 2013. V. 10. № 2. P. 242—250. DOI: 10.1007/s12182-013-0273-6.

32. Yun S., Lee E., Park Y.K., Jeong S.Y., Han J., Jeong B., Jeon J.K. // Res. Chem. Intermed. 2011. V. 37. № 9. P. 1215—1223. DOI:10.1007/s11164-011-0386-8.

33. Yurpalov V.L., Drozdov V.A., Karpova T.R., Lavrenov A.V. // Chem. Sustain. Dev. 2017. V. 25. № 1. P. 107—113. DOI:10.15372/KhUR20170115.

34. Cui X., Liu Y., Liu X. // Catal. Lett. 2015. V. 145. № 7. P. 1464—1473. DOI: 10.1007/s10562-015-1554-z.

35. Liu S., Li C., Chen X., Liu Y., Tsang C.W., Liang C. // J. Catal. 2015. V. 330. P. 485—496. DOI: 10.1021/acs.iecr.8b03806.

36. Kim S.K., Han J.Y., Lee H.S., Yum T., Kim Y., Kim J. // Appl. Energy. 2014. V. 116(C). P. 199—205. DOI: 10.1016/j.apenergy.2013.11.062.

37. Alcalá R., Mavrikakis M., Dumesic J.A. // J Catal. 2003. V. 218. P. 178—190. DOI: 10.1016/S0021-9517(03)00090-3.


Review

For citations:


Nepomnyashchiy A.A., Saibulina E.R., Buluchevskiy E.A., Gulyaeva T.I., Yurpalov V.L., Mironenko R.M., Potapenko O.V., Lavrenov A.V. Simultaneous deoxygenation and isomerization of fatty acid triglycerides of sunflower oil over Pt/Al2O3-zeolite catalysts. Kataliz v promyshlennosti. 2023;23(5):25-34. (In Russ.) https://doi.org/10.18412/1816-0387-2023-5-25-34

Views: 251


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)