Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Hydrogen production by heterogeneous catalytic dehydrogenation of formic acid. A review

https://doi.org/10.18412/1816-0387-2023-5-55-66

Abstract

The review considers recent advances in the field of heterogeneous metal-containing catalysts for the production of hydrogen as an environmentally benign energy carrier by dehydrogenation of formic acid, which is an accessible and low-toxic substance. Although the activity of homogeneous catalysts in the dehydrogenation of formic acid is higher compared to heterogeneous catalysts, the application of the latter ones makes it possible to simplify the technology and increase the environmental safety of hydrogen production from formic acid. The efficiency of heterogeneous catalysts for dehydrogenation of formic acid based on noble metals (Pd, Au, Ag) can be enhanced by the development of advanced methods for the synthesis of monometallic, bimetallic and trimetallic nanoparticles on different supports. The efficiency of different heterogeneous nanocatalysts in dehydrogenation of formic acid is compared and various factors (the nature of a metal, the size of nanoparticles, their composition, and features of the support) affecting their activity and selectivity to hydrogen are discussed. A considerable increase in the activity toward dehydrogenation of formic acid is achieved by enhancing the interaction of metal nanoparticles with the surface of chemically modified substrate, which decreases the size of nanoparticles, increases the uniformity of their distribution over the substrate and changes the electronic state of the metal. Advances in the development of industrial heterogeneous catalysts for the production of pure hydrogen from formic acid will ensure an essential contribution to the development of hydrogen energetics.

About the Authors

E. N. Voskresenskaya
Siberian Engineering and Technologies Ltd., Krasnoyarsk
Russian Federation


V. M. Kirilets
Institute of Chemistry and Chemical Technology SB RAS, Krasnoyarsk Scientific Center SB RAS, Krasnoyarsk
Russian Federation


O. P. Taran
Institute of Chemistry and Chemical Technology SB RAS, Krasnoyarsk Scientific Center SB RAS, Krasnoyarsk; Siberian Federal University, Krasnoyarsk
Russian Federation


B. N. Kuznetsov
Institute of Chemistry and Chemical Technology SB RAS, Krasnoyarsk Scientific Center SB RAS, Krasnoyarsk; Siberian Federal University, Krasnoyarsk
Russian Federation


References

1. Durmaz T. // Energy ReV. 2018. V. 95. P. 328—340. DOI:10.1016/j.rser.2018.07.007.

2. Nguyen K.H., Kakinaka M. // Energy. 2019. V. 132. P. 1049—1057. DOI: 10.1016/j.renene.2018.08.069.

3. Rosen M.A., Koohi-Fayegh S. // Energy Ecol. Environ. 2016. V. 1. P. 10—29. DOI: 10.1142/9789814374972_0001.

4. De Blasio N., Pflugmann F., Lee H., Hua C., Nuñez-Jimenez A., Fallon P. October 2021. Available online: https://www.belfercenter.org/publication/mission-hydrogen-acceleratingtransition-low-carbon-economy (accessed on 27 February 2022).

5. Van Renssen S. // Nat. Clim. Chang. 2020. V. 10. P. 799—801. DOI: 10.1038/s41558-020-0891-0.

6. Navlani-García M., Mori K., Kuwahara Y., Yamashita H. // NPG Asia Mater. 2018. V. 10. P. 277—292. DOI: 10.1038/s41427-018-0025-6.

7. Hafeez S., Barlocco I., Al-Salem S.M., Villa A., Chen X., Delgado J.J., Manos G., Dimitratos N., Constantinou A. // Appl. Sci. 2021. V. 11. P. 8462. DOI: 10.3390/app11188462.

8. Nie W., Luo Y., Yang Q., Feng G., Yao Q., Lu Z.-H. // Chem. Front. 2020. V. 7. P. 709—717. DOI: 10.1039/C9QI01375J.

9. Lang C., Jia Y., Yao X. // Energy Storage Mater. 2020. V. 26. P. 290—312. DOI: 10.1016/j.ensm.2020.01.010.

10. Onishi N., Iguchi M., Yang X., Kanega R., Kawanami H., Xu Q., Himeda Y. // AdV. Energy Mater. 2019. V. 9. Art. 1801275. DOI:10.1002/aenm.201801275.

11. Wen C., Rogie B., Kærn M.R., Rothuizen E.D. // Appl. Energyю 2020. V. 260. Art. 113958. DOI: 10.1016/j.apenergy.2019.113958.

12. Xiao R., Tian G., Hou Y., Chen S., Cheng C., Chen L. // Appl. Energy. 2020. V. 269. Art. 115143. DOI: 10.1016/j.apenergy.2020.115143.

13. Li X., Yang X., Xue H., Pang H., Xu Q. // EnergyChem. 2020. V. 2. Art. 100027. DOI: 10.1016/j.enchem.2020.100027.

14. Chen Y., Li P. , Noh H., Kung C., Buru C.T., Wang X., Zhang X., Farha O.K. // Angew. Chem. Int. Ed. 2019. V. 58. P. 7682—7686.DOI: 10.1002/anie.201901981.

15. Giappa R.M., Tylianakis E., Di Gennaro M., Gkagkas K., Froudakis G.E. // Int. J. Hydrog. Energy. 2021. V. 46. P. 27612—27621. DOI: 10.1016/j.ijhydene.2021.06.021.

16. Barnett B.R., Evans H.A., Su G.M., Jiang H.Z.H., Chakraborty R., Banyeretse D., Hartman T.J., Martinez M.B., Trump B.A., Tarver J.D., Dods M.N, Funke L.M., Borgel J., Reimer J.A., Drisdell W.S., Hurst K.E., Gennett T., Fitzgerald S., Brown C.M., Heard-Gordon M., Long J.R. // J. Am. Chem. Soc. 2021. V. 143. P. 14884—14894. DOI: 10.1021/jacs.1c07223.

17. Gupta A., Baron G.V. , Perreault P. , Lenaerts S., Ciocarlan R.-G., Cool P. , Mileo P. G., Rogge S., Van Speybroeck V. , Watson G., Van der Voort P. , Houlleberghs M., Breynaert E., Martens L.A., Denayer J.F.M. // Energy Storage Mater. 2021. V. 41. P. 69—107. DOI: 10.1016/j.ensm.2021.05.044.

18. Farajzadeh M., Alamgholiloo H., Nasibipour F., Banaei R., Rostamnia S. // Sci. Reр. 2020. V. 10. P. 1—9. DOI: 10.1038/s41598-020-75369-y.

19. Alardhi S.M., Alrubaye J.M., Albayati T.M. // Desalination Water Treat. 2020. V. 179. P. 323—331. DOI: 10.5004/dwt.2020.25000.

20. Zhang X., Shang N., Shang H., Du,T., Zhou X., Feng C., Gao S., Wang C., Wang Z. // Energy Technol. 2019. V. 7. P. 140—145. DOI: 10.1039/C5RA04157K.

21. Mohan M., Sharma V. K., Kumar E.A., Gayathri V. // Energy Storage 2019. V. 1. P. 35. DOI: 10.1002/est2.35.

22. Nechaev Y.S., Denisov E.A., Cheretaeva A.O., Davydov S.Y., Öchsner A. // Fuller. Nanotub. Carbon Nanostruct. 2022. V. 30. P. 211—219. DOI: 10.1080/1536383X.2022.2029424.

23. Wang C., Kim J., Tang J., Kim M., Lim H., Malgras V. , You J., Xu Q., Li J., Yamauchi Y. // Chem. 2020. V. 6. P. 19—40. DOI:10.1016/j.chempr.2019.09.005.

24. Yiwen Chen, Habibullah, Guanghui Xia, Chaonan Jin, Yao Wang, Yigang Yan, Yungui Chen, Xiufang Gong, Yuqiu Lai, Chaoling Wu // Materials 2023, 16, 4219—4232. DOI: 10.3390/ma16124219.

25. Zheng J., Wang C.-G., Zhou H., Ye E., Xu J., Li Z., Loh X.J. // Research. 2021. P. 1—39. DOI: 10.34133/2021/3750689.

26. Lee S.-Y., Lee J.-H., Kim Y.-H., Kim J.-W., Lee K.-J., Park S.-J. // Processes. 2022. V. 10. P. 304. DOI: 10.3390/pr10020304.

27. Cai X.-H., Xie B. // Curr. Org. Chem. 2021. V. 25. P. 223—247. DOI: 10.2174/1385272824999201123195457.

28. Zhong H., Iguchi M., Chatterjee M., Himeda Y., Xu Q., Kawanami H. // AdV. Sustain. Syst. 2018. V. 2. Art. 1700161. DOI:10.1002/adsu.201700161.

29. Ping Y., Yan J.M., Wang Z.L., Wang H.L., Jiang Q. // J. Mater. Chem. A. 2013. V. 1. P. 12188—12191. DOI: 10.1039/C3TA12724A.

30. Enthaler S., Von Langermann J., Schmidt T. // Energy Environ. Sci. 2010. V. 3. P. 1207—1217. DOI: 10.1039/B907569K.

31. Teichmann D., Arlt W., Wasserscheid P. // Int. J. Hydrog. Energy. 2012. V. 37. P. 18118—18132. DOI: 10.1016/j.ijhydene.2012.08.066.

32. Nielsen M., Alberico E., Baumann W., Drexler H.-J., Junge H., Gladiali S., Beller M. // Nature. 2013. V. 495. P. 85—89. DOI:10.1038/nature11891.

33. Monney A., Barsch E., Sponholz P. , Junge H., Ludwig R., Beller M. // Chem. Commun. 2014. V. 50. P. 707—709. DOI: 10.1039/c3cc47306f.

34. Sun Qiming, Ning Wang, Qiang Xu, Jihong Yu // Advanced Materials. 2020. V. 32. P. 44-51. DOI: 10.1002/adma.202001818.

35. Reutemann W., Kieczka H. // Ind. Chem. 2016. V. 1. P. 1—22. DOI: 10.1002/14356007.a12_013.pub3.

36. Miyatani R., Amao Y. // Biotechnol. Lett. 2002. V. 24. P. 1931—1934. DOI: 10.1023/A:1020912527723.

37. Miyatani R., Amao Y. // J. Mol. Catal. B Enzym. 2004. V. 27. P. 121—125. DOI: 10.1016/j.molcatb.2003.11.003.

38. Ma Z., Legrand U., Pahija E., Tavares J.R., Boffito D.C. // Ind. Eng. Chem. Res. 2021. V. 60. P. 803—815. DOI: 10.1021/acs.iecr.0c04711.

39. Duo Wei, Henrik Junge, Matthias Beller // Chem. Sci. 2021. V. 12 P. 6020—6024. DOI: 10.1039/d1sc00467k.

40. Wen M., Mori K., Futamura Yu., Kuwahara Y., Navlani-García M., An T., Yamashita H. //Scientific Reports. 2019. V. 9. Art. 15675. https://doi.org/10.1038/s41598-019-52133-5

41. Preti D., Resta C., Squarcialupi S., Fachinetti G. // Chem. Int. Ed. 2011. V. 50. P. 12551—12554. DOI: 10.1002/anie.201105481.

42. Duo Wei , Rui Sang , Peter Sponholz , Henrik Junge , Matthias Beller // Nature Energy. 2022. V. 7. P. 438—447.

43. Park H., Lee J.H., Kim E.H., Kim K.Y., Choi Y.H., Youn D.H., Lee J.S. // Chem. Commun. 2016. V. 52. P. 14302—14305. DOI:10.1039/c6cc07401d.

44. Sudipta Chatterjee, Indranil Dutta, Yanwei Lum, Zhiping Lai, Kuo-Wei Huang // Energy Environ. Sci. 2021. V. 14. P. 1194—1246.

45. Kim C., Lee Y., Kim K., Lee U. // Catalysts. 2022. V. 12. Art. 1113. https://doi.org/10.3390/ catal12101113

46. Loges B., Boddien A., Gärtner F., Junge H., Beller M. // Toр. Catal. 2010. V. 53. P. 902—914. DOI: 10.1007/s11244-010-9522-8.

47. Wang X., Meng Q., Gao L., Jin Z., Ge J., Liu C., Xing. W. // Int. J. Hydrog. Energy. 2018. V. 43. P. 7055—7071. DOI: 10.1016/j.ijhydene.2018.02.146.

48. Sponholz P., Mellmann D., Junge H., Beller M. // ChemSus-Chem. 2013. V. 6. № 7. P. 1172—1176. DOI: 10.1002/cssc.201300186.

49. Bielinski E.A., Lagaditis P. O., Zhang Y., Mercado B.Q., Würtele C., Bernskoetter W.H., Hazari N., Schneider S. // Journal of the American Chemical Society. 2014. V. 136. № 29. P. 10234–10237. DOI: 10.1021/ja505241x.

50. Navlani-García M., Mori K., Salinas-Torres D., Kuwahara Y., Yamashita H. // Front. Mater. 2019. V. 6. Art. 44. DOI: 10.3389/fmats.2019.00044.

51. Wang Z.-L., Yan J.-M., Wang H.-L., Ping Y., Jiang Q. // Sci.Reр. 2012. V. 2. Р. 598—604.

52. Wang Z.-L., Wang H.-L., Yan J.-M., Ping Y.O.S.-I., Li S.-J., Jiang Q. // Chem. Commun. 2014. V. 50. P. 2732—2734. DOI:10.1039/c3cc49821b.

53. Zhu Q.-L., Tsumori N., Xu Q. // Chem. Sci. 2014. V. 5. P. 195—199. DOI: 10.1039/C3SC52448E.

54. Jiang K., Xu K., Zou S., Cai W.-B. // J. Am. Chem. Soc. 2014. V. 136. P. 4861—4864. DOI: 10.1021/ja5008917.

55. Lee J.H., Ryu J., Kim J.Y., Nam S.-W., Han J.H., Lim T.-H., Gautam S., Chae K.H., Yoon C.W. // J. Mater. Chem. A. 2014. V. 2. P. 9490—9495. DOI: 10.1039/C4TA01133C.

56. Sanchez F., Alotaibi M.H., Motta D., Chan-Thaw C.E., Rakotomahevitra A., Tabanelli T., Roldan A., Hammond C., He Q., Davies T., Villa A., Dimitratos N. // Energy Fuels. 2018. V. 2. P. 2705—2716. DOI: 10.1039/C8SE00338F.

57. Tedsree K., Li T., Jones S.C., Chan C.W.A., Yu K.M.K., Bagot P., Marquis E., Smith G.D.W., Tsang S.C.E. // Nat. Nanotechnol. 2011. V. 6. P. 302—307. DOI: 10.1038/nnano.2011.42.

58. Wang Z.-L., Yan J.-M., Wang H.-L., Ping Y., Jiang Q. // J. Mater. Chem. A. 2013. V. 1. P. 12721—12725. DOI: 10.1039/C3TA12531A.

59. Zhang S., Metin Ö., Su D., Sun S. // Angew. Chem. Int. Ed. 2013. V. 52. P. 3681—3684. DOI: 10.1002/anie.201300276.

60. Metin Ö., Sun X., Sun S. // Nanoscale. 2013. V. 5. P. 910—912. DOI: 10.1039/c2nr33637e.

61. Wang Z.-L., Yan J.-M., Ping Y., Wang H.-L., Zheng W.-T., Jiang Q. // Angew. Chem. Int. Ed. Engl. 2013. V. 52(16). P. 4406–4409. DOI: 10.1002/anie.201301009.

62. Wang Z.-L., Ping Y., Yan J., Wang H.-L., Jiang Q. // Int. J. Hydrog. Energy. 2014. V. 39. P. 4850—4856. DOI: 10.1016/j.ijhydene.2013.12.148.

63. Yurderi M., Bulut A., Zahmakiran M., Kaya M. // Appl. Catal. B Environ. 2014. V. 160—161. P. 514—524. DOI: 10.1016/j.apcatb.2014.06.004.

64. Chen Y., Zhu Q.-L., Tsumori N., Xu Q. // J. Am. Chem. Soc. 2015. V. 137. P. 106—109. DOI: 10.1021/ja511511q.

65. Ribota Peláez M., Ruiz-López E., Domínguez M.I., Ivanova S., Centeno M.A. // Catalysts 2023. V. 13. P. 977. https://doi.org/10.3390/catal13060977

66. Akbayrak S., Tonbul Y., Özkar S. // Appl. Catal. B. Environ. 2017. V. 206. P. 384—392. DOI: 10.1016/j.apcatb.2017.01.063.

67. Ojeda M., Iglesia E. // Chem. Int. Ed. 2009. V. 48. P. 4800—4803. DOI: 10.1002/anie.200805723.

68. Liu J., Lan L., Liu X., Yang X., Wu X. // Int. J. Hydrog. Energy. 2021. V. 46. P. 6395—6403. DOI: 10.1016/j.ijhydene.2020.11.115.

69. Bi Q.-Y., Du X.-L., Liu Y.-M., Cao Y., He H.-Y., Fan K.-N. // J. Am. Chem. Soc. 2012. V. 134. P. 8926—8933. DOI: 10.1021/ja301696e.

70. Navlani-Garcı M., Mori K., Nozaki A., Kuwahara Ya., Yamashita H. // ChemistrySelect. 2016. V. 1. P. 1879—1886. DOI:10.1002/slct.201600559.

71. Celia Martin, Asunción Quintanilla, Gonzalo Vega, Jose A. Casas // Appl. Catal. B. 2022 V. 317. Р. 121802 DOI: 10.1016/j.apcatb.2022.121802.

72. Zhang X., Shang N., Zhou X., Feng C., Gao S., Wu Q., Wang Z., Wang C. // New J. Chem. 2017. V. 41. P. 3443—3449. DOI:10.1039/C6NJ03873E.

73. Qin Y.-L., Wang J., Meng F.-Z., Wang L.-M., Zhang X.-B // Chem. Commun. 2013. V. 49. P. 10028—10030. DOI: 10.1039/c3cc46248j.

74. Mori K., Tanaka H., Dojo M., Yoshizawa K., Yamashita H. // Chem. A. Eur. J. 2015. V. 21. P. 12085—12092. DOI: 10.1002/chem.201501760.

75. Huang Y., Zhou X., Yin M., Liu C., Xing W. // Chem. Mater. 2010. V. 22. P. 5122—5128. DOI: 10.1021/cm101285f.

76. Gu X., Lu Z. H., Jiang H. L., Akita T., Xu Q. // J. Am. Chem. Soc. 2011. V. 133. P. 11822—11825. DOI: 10.1021/ja200122f.

77. Wen M., Mori K., Kuwahara Y., Yamashita H. // ACS Energy Lett. 2017. V. 2. P. 1—7. DOI: 10.1021/acsenergylett.6b00558.

78. Yan J.-M., Wang Z.-L., Gu L., Li S.-J., Wang H.-L., Zheng W.-T., Jiang Q. // Adv. Energy Mater. 2015. V. 5. Art. 1500107. DOI:10.1002/aenm.201500107.

79. Mori K., Dojo M., Yamashita H. // ACS Catal. 2013. V. 3. P. 1114—1119. DOI: 10.1021/cs400148n.

80. Masuda S., Mori K., Futamura Y., Yamashita H. // ACS Catal. 2018. V. 8. P. 2277—2285. DOI: 10.1021/acscatal.7b04099.

81. Navlani-Garcı M., Mori K., Salinas-Torres D., Kuwahara Ya., Yamashita H. // Front. Mater. 2019. DOI: 10.3389/fmats.2019.00044.

82. Huang Y., Zhou X., Yin M., Liu C., Xing W. // Chem. Mater. 2010. V. 22. P. 5122—5128. DOI: 10.1021/cm101285f.

83. Sun Q., Wang N., Bing Q., Si R., Liu J., Bai R., Zhang P., Jia M., Yu J. // Chem. 2017. V. 3. P. 477—493. DOI: 10.1016/j.chempr.2017.07.001.

84. Yurderi M., Bulut A., Caner N., Celebi M., Kaya M., Zahmakiran M. // Chem. Commun. 2015. V. 51. P. 11417—11420. DOI:10.1039/C5CC02371H.

85. Yang L., Luo W., Cheng G. // Int. J. Hydrogen Energy. 2016. V. 41. P. 439—446. DOI: 10.1016/j.ijhydene.2015.10.074.

86. Sobolev V., Asanov I., Koltunov K. // Energies. 2019. V. 12. Art. 4198. DOI: 10.3390/en12214198.

87. Francisco Rodríguez-Reinoso // Carbon. 1998. V. 36. P. 159—175. DOI: 10.1016/S0008-6223(97)00173-5.

88. Toebes M.L., van Dillen J.A., de Jong K.P. // J. Mol. Cat. A Chem. 2001. V. 173. P. 75—98. DOI: 10.1016/S1381-1169(01)00146-7.

89. Zacharska M., Chuvilin A.L., Kriventsov V.V., Beloshapkin S., Estrada M., Simakov A., Bulushev D.A. // Catal. Sci. Technol. 2016. V. 6. P. 6853—6860. DOI: 10.1039/C6CY00552G.

90. Bulushev D.A., Sobolev V.I., Pirutko L.V., Starostina A.V., Asanov I.P., Modin E., Chuvilin A.L., Gupta N., Okotrub A.V., Bulusheva L.G. // Catalysts. 2019. V. 9. P. 376. DOI: 10.3390/catal9040376.

91. Yadav M., Singh A.K., Tsumori N., Xu Q. // J. Mater. Chem. 2012. V. 22. P. 19146—19150. DOI: 10.1039/c2jm32776g.

92. Li Z., Yang X., Tsumori N., Liu Z., Himeda Y., Autrey T., Xu Q. // ACS Catal. 2017. Iss. 7. V. 4. P. 2720—2724. DOI: 10.1021/acscatal.7b00053.

93. Jiang K., Xu K., Zou S., Cai W.-B. // J. Am. Chem. Soc. 2014. V. 136. P. 4861—4864. DOI: 10.1021/ja5008917.

94. Bi Q.-Y., Lin J.-D., Liu Y.-M., Du X.-.L, Wang J.-Q., He H.-Y., Cao Y. // Angew. Chem. Int. Ed. 2014. V. 53. P. 13583—13587.

95. Bi Q.-Y., Lin J.-D., Liu Y.-M., He H.-Y., Huang F.-Q., Cao Y. // Angew. Chem. Int. Ed. 2016. V. 55. P. 11849—11853. DOI:10.1002/anie.201409500.

96. Lv Q., Meng Q., Liu W., Sun N., Jiang K., Ma L., Peng Z., Cai W., Liu C., Ge J., Liu L.-M., Xing W. // J. Phys. Chem. C. 2018. V. 122. P. 2081—2088. DOI: 10.1021/acs.jpcc.7b08105.

97. Wang N., Sun Q., Bai R., Li X., Guo G., Yu J. // J. Am. Chem. Soc. 2016. V. 138. P. 7484—7487. DOI: 10.1021/jacs.6b03518.

98. Zhou X., Huang Y., Xing W., Liu C., Liao J., Lu T. // Chem. Commun. 2008. P. 3540—3542. DOI: 10.1039/b803661f.

99. Yan J.-M., Wang Z.-L., Gu L., Li S.-J., Wang H.-L., Zheng W.-T., Jiang Q. // Adv. Energy Mater. 2015. V. 5. Art. 1500107. DOI:10.1002/aenm.201500107.

100. Song F.-Z., Zhu Q.-L., Yang X., Zhan W.-W., Pachfule P., Tsumori N., Xu Q. // Adv. Energy Mater. 2018. V. 8. Art. 1701416. DOI: 10.1002/aenm.201701416.

101. Chen Y., Zhu Q.-L., Tsumori N., Xu Q. // J. Am. Chem. Soc. 2015. V. 137. P. 106—109. DOI: 10.1021/ja511511q.

102. Liu Q., Yang X., Huang Y., Xu S., Su X., Pan X., Xu J., Wang A., Liang C., Xinkui W., Zhang T. // Energy Environ. Sci. 2015. V. 8. P. 3204—3207. DOI: 10.1039/C5EE02506K.

103. Wang L., Zhang J., Wang G., Zhang W., Wang C., Bian C., Xiao F.-S. // Chem. Commun. 2017. V. 53. P. 2681—2684. DOI:10.1039/c6cc09599b.

104. Li S.-J., Zhou Y.-T., Kang X., Liu D.-X., Gu L., Zhang Q.-H., Yan J.-M., Jiang Q. // Adv. Mater. 2019. V. 31. Art. 1806781. DOI:10.1002/adma.201806781.

105. Cai Y.-Y., Li X.-H., Zhang Y.-N., Wei X., Wang K.-X., Chen J.-S. // Angew. Chem. Int. Ed. 2013. V. 52. P. 1822—1825. DOI: 10.1002/anie.201304652.

106. Tang C., Surkus A.-E., Chen F., Pohl M.-M., Agostini G., Schneider M., Junge H., Beller M. // Angew. Chem. Int. Ed. 2017. V. 56. P. 16616—16620. DOI: 10.1002/anie.201710766.

107. Ruiz-López E., Ribota Peláez M., Blasco Ruz M., Domínguez Leal M.I., Martínez Tejada M., Ivanova S., Centeno M.Á. // Materials 2023. V. 16. P. 472. https://doi.org/10.3390/ma16020472

108. Kohsuke Mori, Tatsuya Fujitaa, Hiromi Yamashita //EES Catal. 2023.V. 1. P. 84—93. DOI: 10.1039/d2ey00049k.

109. Jin Qu, Hongli Wang, Zelong Wang, Jingjing Zhang, Zhankui Zhao // Eur. Phys. J. Appl. Phys. 2023. V. 98. Art. 15 https://doi.org/10.1051/epjap/2023220271

110. Bulushev D.A. // Energies. 2021. V. 14. Art. 6810. DOI: 10.3390/en14206810.

111. Podyacheva O., Lisitsyn A., Kibis L., Boronin A., Stonkus O., Zaikovskii V., Suboch A., Sobolev V., Parmon V. // Energies. 2019. V. 12. Art. 3976 DOI: 10.3390/en12203976.

112. Golub F.S., Beloshapkin S., Gusel’Nikov A.V. , Bolotov V. A., Parmon V. N., Bulushev D.A. // Energies. 2019. V. 12. Art. 3885. DOI: 10.3390/en12203885.

113. Nishchakova A.D., Bulushev D.A., Stonkus O.A., Asanov I.P. , Ishchenko A.V., Okotrub A.V., Bulusheva L.G. // Energies. 2019. V. 12. Art. 4111. DOI: 10.3390/en12214111.

114. Bulushev D.A., Bulusheva L.G. // Catal. Rev. 2021. P. 1—40. DOI: 10.1080/01614940.2020.1864860.

115. Suboch A., Podyacheva O. // Energies. 2021. V. 14. Art. 1501. DOI: 10.3390/en14051501.

116. Kadhem A.A., Al-Nayili A. // Catal. Surv. Asia. 2021. V. 25. P. 324—333. DOI: 10.1007/s10563-021-09332-w.

117. Yan. J.-M., Li S.-J., Yi S.-S., Wulan B.-R., Zheng W.-T., Jiang Q. // Adv. Mater. 2018. V. 30. P. 1703038-46. DOI: 10.1002/adma.201703038

118. Zhang Q., Mao Q., Zhou Y., Zou L., Zhu D., Huang Y., Gao H., Luo X., Mao Y., Liang Z. // ACS Sustainable Chem. Eng. 2022. 10. V. 14. P. 4599—4609. DOI: 10.1021/acssuschemeng.1c08630.

119. Zou L., Liu Q., Zhu D., Huang Y., Mao Y., Luo X., Liang Z. // ACS Appl. Mater. Interfaces. 2022. V. 14. P. 17282—17295. DOI: 10.1021/acsami.2c00343.


Review

For citations:


Voskresenskaya E.N., Kirilets V.M., Taran O.P., Kuznetsov B.N. Hydrogen production by heterogeneous catalytic dehydrogenation of formic acid. A review. Kataliz v promyshlennosti. 2023;23(5):55-66. (In Russ.) https://doi.org/10.18412/1816-0387-2023-5-55-66

Views: 502


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)