Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Microwave-assisted synthesis of solketal from glycerol and acetone

https://doi.org/10.18412/1816-0387-2024-1-60-68

Abstract

Herein, microwave-assisted synthesis of solketal from glycerol and acetone in the presence of montmorillonite modified with aqueous solution of 0.25 mol/l HCl (0.25M HCl/MM) was demonstrated. The reaction was studied in a methanol solution at an acetone/glycerol molar ratio of 2.45–7.53, a catalyst concentration of 1.2–2.8 wt.% (based on the mass of loaded glycerol), and 30–56 °C. Solketal was shown to be the major product with 96.1–99.2 % selectivity. The maximum solketal yield of 91.3 % with 98.6 % selectivity was obtained in 15 min of the reaction at an acetone/glycerol molar ratio of 7.53, a catalyst loading of 2.3 wt.% and 56 °C. The catalytic properties of 0.25M HCl/MM in the reaction under MW heating and thermal conventional heating were compared. It was found that the yield of solketal in the MW-assisted synthesis is 2 times higher compared to the process with conventional heating.

About the Authors

V. A. Bolotov
Boreskov Institute of Catalysis SB RAS, Novosibirsk
Russian Federation


A. E. Kibilyuk
Novosibirsk State Technical University, Novosibirsk
Russian Federation


V. N. Parmon
Boreskov Institute of Catalysis SB RAS, Novosibirsk
Russian Federation


V. N. Panchenko
Boreskov Institute of Catalysis SB RAS, Novosibirsk; Novosibirsk State Technical University, Novosibirsk
Russian Federation


M. N. Timofeeva
Boreskov Institute of Catalysis SB RAS, Novosibirsk; Novosibirsk State Technical University, Novosibirsk
Russian Federation


References

1. Checa M., Nogales-Delgado S., Montes V., Encinar J.M. Recent advances in glycerol catalytic valorization: A review // Catalysts. 2020. V. 10. № 1279. https://doi.org/10.3390/catal10111279

2. Bagnato G., Iulianelli A., Sanna A., Basile A. Glycerol рroduction and transformation: A critical review with particular emphasis on glycerol reforming reaction for producing hydrogen in conventional and membrane reactors // Membranes. 2017. V. 7. Art. 17. https://doi.org/10.3390/membranes7020017

3. Nanda M.R., Yuan Z., Qin W., Xu C. (Charles). Recent advancements in catalytic conversion of glycerol into propylene glycol: A review // Catalysis Reviews. 2016. V. 8. № 3. P. 309—336. https://doi.org/10.1080/01614940.2016.1166005

4. Максимов А.Л., Нехаев А.И., Рамазанов Д.Н. Простые эфиры и ацетали — перспективные продукты нефтехимии из возобновляемого сырья (обзор) // Нефтехимия. 2015. Т. 55. № 1. С. 3—24. https://doi.org/10.7868/S0028242115010104

5. Correa I., Faria R.P.V., Rodrigues A.E. Continuous valorization of glycerol into solketal: Recent advances on catalysts, processes, and industrial perspectives // Sustain. Chem. 2021. V. 2. P. 286— 324. https://doi.org/10.3390/suschem2020017

6. Mota C.J.A., Silva C.X.A., Rosenbach N.J., Costa J., Silva F. Glycerin derivatives as fuel additives: the addition of glycerol/ acetone ketal(solketal) in gasolines // Energy Fuels. 2010. V. 24. Р. 2733—2736. https://doi.org/10.1021/ef9015735

7. Патент US 20090270643 А1, опубл. 29.10.2009; US 6890364 В2, опубл. 10.05.2005.

8. Патент RU 2365617 опубл. 27.08.2009; ЕА 018090, опубл. 30.05.2013; ЕР 2298851, опубл. 08.10.2014.

9. Data Bridge Market Research https://www.databridgemarketresearch.com/reports/global-solketal-market

10. Amri S., Gómez J., Balea A., Merayo N., Srasra E., Besbes N., Ladero M. Green production of glycerol ketals with a clay-based heterogeneous acid // Catalyst. Appl. Sci. 2019. V. 9. Art. 4488. https://doi.org/10.3390/app9214488

11. Timofeeva M.N., Panchenko V.N., Krupskaya V.V., Gil A., Vicente M.A. Effect of nitric acid modification of montmorillonite montmorillonite clay on synthesis of solketal from glycerol and acetone // Catal. Commun. 2017. V. 90. P. 65—69. https://doi.org/10.1016/j.catcom.2016.11.020

12. Коваленко О.Н., Сименцова И.И., Панченко В.Н., Тимофеева М.Н. Кислотная активация как способ регулирования каталитических свойств монтмориллонита в реакции синтеза золькеталя из глицерина и ацетона // Катализ в промышленности. 2022. T. 22. № 1. С. 57—66. https://doi.org/10.18412/1816-0387-2022-1-57-66

13. Horikoshi S., Serpone N. Microwaves in catalysis: methodology and applications. John Wiley & Sons, 2015.

14. Aguado-Deblas L., Estevez R., Russo M., La Parola V., Bautista F.M., Testa M.L. Sustainable microwave-assisted solketal synthesis over sulfonic silica-based catalysts // J. Environ. Chem. Eng. 2022. V. 10. Art. 108628. https://doi.org/10.1016/j.jece.2022.108628

15. Priya S.S., Selvakannana P.R., Chary K.V.R., Kantam M.L., Bhargava S.K. Solvent-free microwave-assisted synthesis of solketal from glycerolusing transition metal ions promoted mordenite solid acid catalysts // Mol. Catal., 2017. V. 434. P. 184—193. http://dx.doi.org/10.1016/j.mcat.2017.03.001

16. Filho E.G.R.T.,•Dall’Oglio E.L., de Sousa P.T. (Jr.), Ribeiro F., Marques M.Z., de Vasconcelos L.G., de Amorim M.P.N., Kuhnen C.A. Solketal production in microwave monomode batch reactor: the role of dielectric properties in glycerol ketalization with acetone // Braz. J. Chem. Eng. 2022. V. 39. P. 691—703. https://doi.org/10.1007/ s43153-021-00206-2

17. Ao S., Alghamdi L.A., Kress T., Selvaraj M., Halder G., Wheatley A.E.H., Rokhum S.L. Microwave-assisted valorization of glycerol to solketal using biomass-derived heterogeneous catalyst // Fuel. 2023. V. 345. Art. 128190. https://doi.org/10.1016/j.fuel.2023.128190

18. Prasad K.S., Shamshuddin S.Z.M., Pratap S.R. Microwave synthesis of fuel additive over modified amorphous aluminophosphate // Kinetics, Chem. Data Collect. 2022. V. 38. Art. 100818. https://doi.org/10.1016/j.cdc.2021.100818

19. Черноусов Ю.Д., Шеболаев И.В., Иванников В.И., Икрянов И.М., Болотов В.А., Танашев Ю.Ю. Установка для проведения химических реакций со сверхвысокочастотным нагревом реагентов // Приборы и техника эксперимента. 2019. № 2. С. 136—141. https://doi.org/10.1134/S0032816219020046

20. Olphen H.V., Fripiat J.J. Data handbook for clay materials and other non-metallic // Minerals. 1999. V. 131. № 1. P. 285—337. https://doi.org/10.1346/CCMN.1980.0280215

21. Da Silva C.X.A., Mota C.J.A. The influence of impurities on the acid-catalyzed reaction of glycerol with acetone // Biomass Bioenergy. 2011. V. 35. № 8. P. 3547—3551. https://doi.org/10.1016/j.biombioe.2011.05.004

22. Moreira M.N., Faria R.P.V., Ribeiro A.M., Rodrigues A.E. Solketal production from glycerol ketalization with acetone: Catalyst selection and thermodynamic and kinetic reaction study // Ind. Eng. Chem. Res. 2019. V. 58. P. 17746—17759. https://doi.org/ 10.1021/acs.iecr.9b03725

23. Милованов О.С., Собенин Н.П. Техника сверхвысоких частот. М.: Атомиздат, 1980. 464 с.


Review

For citations:


Bolotov V.A., Kibilyuk A.E., Parmon V.N., Panchenko V.N., Timofeeva M.N. Microwave-assisted synthesis of solketal from glycerol and acetone. Kataliz v promyshlennosti. 2024;24(1):60-68. (In Russ.) https://doi.org/10.18412/1816-0387-2024-1-60-68

Views: 466


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)