

Photocatalytic oxidation of model organic dyes in the presence of Na+, NO2–, NO3– ions: theoretical and applied aspects
https://doi.org/10.18412/1816-0387-2024-1-69-82
Abstract
The influence of the concentration of Na+, NO2–, NO3– ions on the rate of photocatalytic oxidation of model organic dyes was studied in the article: cationic – methylene blue (MB); anionic – methyl orange (MO). Based on studies of hydrochemical indicators of polluted rivers in urban areas (Khabarovsk, Russia) in the period from 1999 to 2019, it was shown that the concentration of ions varies in the ranges: 0.005–0.7 mg/l for NO2–; 0.05–15 mg/l for NO3–; 13–180 mg/l for Na+. Optical spectrophotometry was used to study the kinetics of photooxidation of MC and MO in the concentration ranges of the studied ions: 0–1–10–100–1000–10000 mg/l using P25 titanium oxide as a photocatalyst. The photooxidation time (t) was estimated at various values of the degree of transformation (α) of dyes at: initial – 10 %t; medium – 50 %t; final – 90 %t stages of the photocatalytic process. The effect of absorption of light quanta with wavelengths of 200–350 nm by Na+/NO2– and Na+/NO3– ions is shown depending on the concentrations of these ions in the photocatalytic solution. Recommendations for practical applications of the method of photocatalytic water purification of real polluted waters are given, showing the need to take into account the concentration of the studied ions. A description of the observed effect of ions on the rate of photocatalytic oxidation of model organic dyes is proposed from the point of view of the band structure of semiconductors, elements of the theory of electrolytic dissociation and recombination of free radicals in photocatalytic processes.
About the Authors
A. V. ZaitsevRussian Federation
V. P. Shesterkin
Russian Federation
E. A. Kirichenko
Russian Federation
M. S. Kruglov
Russian Federation
References
1. Biao S., Chuanglin F., Xia L., Xiaomin G., Zhitao L. // Environmental Impact Assessment Review. 2023. V. 100. Art. 107092. https://doi.org/10.1016/j.eiar.2023.107092
2. Li C., Mingxi Z., Jingzhe W., Zhiqin Z., Chengjiao D., Xiangxiang W., Shuling Z., Xiaohan B., Zhijie L., Zimin L., Linchuan F. // Science of The Total Environment. 2022. V. 835. Art. 155441. https://doi.org/10.1016/j.scitotenv.2022.155441
3. Xiao C., Yi F., Ying W., Fei W., Liyuan S., Rongzhen Z. // Science of The Total Environment. 2022. V. 850. Art. 157857. https://doi.org/10.1016/j.scitotenv.2022.157857
4. Ostin G., Juan F.S., Luisa F.E., Miquel C., Anna S., Martin T. // Environmental Pollution. 2022. V. 315. Art. 120366. https://doi.org/10.1016/j.envpol.2022.120366
5. Hassimi A.H., Mohd H.M., Nur 'Izzati I. // Journal of Water Process Engineering. 2020. V. 33. Art. 101035. https://doi.org/10.1016/j.jwpe.2019.101035
6. Junjie L., Yueling Z., Yelin D., Deping X., Yajun T., Kechang X. // Sustainable Energy Technologies and Assessments. 2021. V. 47. Art. 101464. https://doi.org/10.1016/j.seta.2021.101464
7. Sabine O., Thomas S.K. // Ecological Economics. 2023. V. 208. Art. 107811. https://doi.org/10.1016/j.ecolecon.2023.107811
8. Nasser M.H., Islam G., Maryam G.E. // Applied Surface Science Advances. 2023. V.15. P. 100395. https://doi.org/10.1016/j.apsadv.2023.100395
9. Hoang Q.A., Thi P.Q.L., Nhu D.L., Xi X.L., Thi T.D., Josette G., Emma R., Shurong Z., Neung-Hwan O., Chantha O., Chaiwat E., Tien D.N., Quang T.N., Tran D.N., Trong N.N., Thi L.T., Tatsuya K., Rumi T., Shin T., Tu B.M., Thi A.H.N. // Science of The Total Environment. 2021. V. 764. Art. 142865. https://doi.org/10.1016/j.scitotenv.2020.142865
10. Ostin G., Juan F.S., Luisa F.E., Miquel C., Anna S., Martin T. // Environmental Pollution. 2022. V. 315. Art. 120366. https://doi.org/10.1016/j.envpol.2022.120366
11. Verena K., Uta P. // Environmental Pollution. 2023. V. 319. Art. 120960. https://doi.org/10.1016/j.envpol.2022.120960
12. Camilo Z., Daniela N., Freddy F., Ezequiel Z., Ming N., Frank A., Victor H.G. // Environmental Technology & Innovation. 2021. V. 22. Art. 101504. https://doi.org/10.1016/j.eti.2021.101504
13. Шестеркин В.П., Афанасьева М.И., Шестеркина Н.М. // Геоэкология. Инженерная геология, гидрогеология, геокриология. 2019. № 3. С. 42—51.
14. Шестеркин В.П., Шестеркина Н.М., Шамов В.В. // В сб.: Историко-культурное и природное наследие Дальнего Востока на рубеже веков: проблемы изучения и сохранения. Материалы вторых Гродековских чтений. Хабаровский краевой краеведческий музей им. Н.И. Гродекова; Дальневосточная государственная научная библиотека; Хабаровский государственный педагогический университет; Приамурское географическое общество. Ответственный редактор Н.И. Рубан, 1999. С. 328—330.
15. Морина О.М., Шестеркин В.П., Шестеркина Н.М., Иванова Е.Г. // В сб.: города Дальнего Востока: экология и жизнь человека. Материалы конференции (Дружининские чтения). 2003. С. 104—106.
16. Шестеркин В.П., Афанасьева М.И., Шестеркина Н.М. // В сб.: Экология и безопасность жизнедеятельности городов: проблемы и решения. Материалы 19-й Междунар. конф. городов-побратимов «Формирование и управление экологической политикой городов» и 6-й Всероссийской научно-практической конференции с международным участием. 2019. С. 255—258.
17. Petin A.N., Lebedeva M.G., Crimean O.V. // Belgorod: Publishing House of BelSU. 2006. Art. 252
18. Meena L., Babaji G. // Groundwater for Sustainable Development. 2023. V. 20. Art. 100888. https://doi.org/10.1016/j.gsd.2022.100888
19. Jeevanantham S., Saravanan A., Hemavathy R.V., Kumar S.P., Yaashikaa P.R., Yuvaraj D. // Environmental Technology & Innovation. 2019. V. 13. P. 264—276. https://doi.org/10.1016/j.eti.2018.12.007
20. John H., Theoni M.M., Simos M., Darem A., Inge van den B., Evina K., Balsam A., Heba G., Stefaan S., Luiz W., Hussam J. // Science of The Total Environment. 2018. V. 639.
21. Sameena N.M., Prakash C.G., Atul N.V., Sandeep N.M. // Journal of Water Process Engineering. 2020. V. 35. Art. 101193. https://doi.org/10.1016/j.jwpe.2020.101193
22. Karthikeyan C., Prabhakarn A., Ramachandran K., Abdullah M.A., Karuppuchamy S. // Journal of Alloys and Compounds. 2020. V. 828. Art. 154281. https://doi.org/10.1016/j.jallcom.2020.154281
23. Junhua Y., Yaozu G., Rui G., Xuanwen L. // Chemical Engineering Journal. 2019. V. 373. P. 624—641. https://doi.org/10.1016/j.cej.2019.05.071
24. Shahina R., Soo-Jin P. // Journal of Industrial and Engineering Chemistry. 2020. V. 84. P. 23—41. https://doi.org/10.1016/j.jiec.2019.12.021
25. Krishna K.J., Swapnamoy D., Ishita B., Cheryl B.P., Ram K.S., Himadri T.D., Swati D., Vinod K. // Science of The Total Environment. 2022. V. 806. Part 3. Art. 151358. https://doi.org/10.1016/j.scitotenv.2021.151358
26. Zaitsev A.V., Astapov I.A. // Materials Letters. 2022. V. 310. Art. 131509. https://doi.org/10.1016/j.matlet.2021.131509
27. Parul, Kamalpreet K., Rahul B., Prit P.S., Sandeep K. // Journal of Environmental Chemical Engineering. 2020. V. 8. Is. 2. Art. 103666. https://doi.org/10.1016/j.jece.2020.103666
28. Kaviya P.S., Kanmani S. // Chemical Engineering Research and Design. 2020. V. 154. P. 135—150. https://doi.org/10.1016/j.cherd.2019.11.035
29. Шестеркин В.П. // Чтения памяти Владимира Яковлевича Леванидова. 2014. № 6. С. 748—753.
30. Xin Zhang, Yan Zhang, Peng Shi, Zhilei Bi, Zexuan Shan, Lijiang Ren. The deep challenge of nitrate pollution in river water of China // Science of The Total Environmen. 2021. V. 770. Art. 144674. https://doi.org/10.1016/j.scitotenv.2020.144674
31. Letícya L.C., Dachamir H., Arthur S.E., Suelen M., Gianluca L., Regina F. // Journal of Photochemistry and Photobiology A: Chemistry. 2019 V. 372. P. 1—10. https://doi.org/10.1016/j.jphotochem.2018.11.048
32. Franco B., Julián O.O., Marcelo A., Maximiliano B. // Results in Engineering. 2022. V. 16. Art. 100765. https://doi.org/10.1016/j.rineng.2022.100765
Review
For citations:
Zaitsev A.V., Shesterkin V.P., Kirichenko E.A., Kruglov M.S. Photocatalytic oxidation of model organic dyes in the presence of Na+, NO2–, NO3– ions: theoretical and applied aspects. Kataliz v promyshlennosti. 2024;24(1):69-82. (In Russ.) https://doi.org/10.18412/1816-0387-2024-1-69-82