Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Catalytic reduction of carbon dioxide on industrial catalysts

https://doi.org/10.18412/1816-0387-2024-3-6-15

Abstract

The applicability of some industrial catalysts for the process of carbon dioxide conversion into synthesis gas has been evaluated process of carbon dioxide conversion into synthesis gas. For the study were chosen catalysts on the basis of transition metals (Fe, Ni, Co) and Cu, used in large-tonnage hydrogenation processes and synthesis-gas technology: NIAP-03-01 (catalyst for steam conversion of hydrocarbon gases), NIAP-06-06 (catalyst for low-temperature conversion of CO), AmoMax 10 (catalyst for ammonia synthesis), Co-Al2O3 /SiO2 (catalyst for synthesis of hydrocarbons by Fischer–Tropsch method). The catalysts were tested in the process of catalytic reduction of CO2 by reaction reverse gaswater shift (RGWS). It was shown that Cu-containing catalyst (NIAP 06-06) possesses the highest activity and selectivity in the process of catalytic reduction of CO2. Under conditions of GHSV = 32000 h–1, H2 /CO2 = 2, and temperatures of 500–800 °C, the equilibrium of the RGWS reaction is achieved by 97 %. Due to selection of technological parameters of CO2 reduction (temperature, H2 /CO2 ratio) it is possible to obtain synthesis gas of the required composition. Due to selection of technological parameters of CO2 reduction (temperature, H2 /CO2 ratio) it is possible to obtain synthesis gas of the required composition for the synthesis of hydrocarbons and methanol.

About the Authors

A. N. Saliev
Platov South-Russian State Polytechnic University (NPI), Novocherkassk
Russian Federation


V. B. Il'in
Platov South-Russian State Polytechnic University (NPI), Novocherkassk
Russian Federation


M. A. Timokhina
Platov South-Russian State Polytechnic University (NPI), Novocherkassk
Russian Federation


A. V. Dul'nev
OOO «NIAP-KATALIZATOR», Novomoskovsk
Russian Federation


A. P. Savost'yanov
Platov South-Russian State Polytechnic University (NPI), Novocherkassk
Russian Federation


R. E. Yakovenko
Platov South-Russian State Polytechnic University (NPI), Novocherkassk
Russian Federation


References

1. Climate change 2014: mitigation of climate change. Edenhofer O. (ed.). Cambridge University Press, 2015. Т. 3. DOI: 10.1017/CBO9781107415416.

2. Friedlingstein P., O'sullivan M., Jones M.W., Andrew R.M. et al. // Earth System Science Data Discussions. 2022. V. 2022. P. 1—159. DOI: 10.5194/essd-14-4811-2022.

3. Solomon S., Plattner G.-K., Knutti R., Friedlingstein P. // Proceedings of the National Academy of Sciences. 2009. V. 106. № 6. P. 1704—1709. DOI: 10.1073/pnas.0812721106.

4. Shu D.Y., Deutz S., Winter B.A., Baumgärtner N., Leenders L., Bardow A. // Renewable Sustainable Energy Reviews. 2023. V. 178. P. 113246. DOI: 10.1016/j.rser.2023.113246.

5. Jarvis S.M., Samsatli S. // Renewable Sustainable Energy Reviews. 2018. V. 85. P. 46—68. DOI: 10.1016/j.rser.2018.01.007.

6. Jangam A., Das S., Dewangan N., Hongmanorom P., Hui W.M., Kawi S. // Catalysis Today. 2020. V. 358. P. 3—29. DOI: 10.1016/j.cattod.2019.08.049.

7. Kattel S., Liu P., Chen J.G. // Journal of the American Chemical Society. 2017. V. 139. № 29. P. 9739—9754. DOI: 10.1021/jacs.7b05362.

8. Мордкович В.З., Синева Л.В., Кульчаковская Е.В., Асалиева Е.Ю. // Катализ в промышленности. 2015. № 5. C. 23—45. DOI: 10.18412/1816-0387-2015-5-23-45.

9. Zhang Y., Ding C., Wang J., Jia Y., Xue Y., Gao Z., Yu B., Gao B., Zhang K., Liu P. // Catalysis Science Technology. 2019. V. 9. № 7. P. 1581—1594. DOI: 10.1039/C8CY02593B.

10. Шелдон Р.А. Химические продукты на основе синтез-газа. Под ред. Локтева С.М. М.: Химия, 1987. 247 с.

11. Galadima A., Muraza O. // Journal of Natural Gas Science Engineering. 2015. V. 25. P. 303—316. DOI: 10.1016/j.jngse.2015.05.012.

12. Simakov D.S.A. Renewable synthetic fuels and chemicals from carbon dioxide: fundamentals, catalysis, design considerations and technological challenges. Springer, 2017. 75 p. DOI: 10.1007/978-3-319-61112-9.

13. Yang L., Pastor-Pérez L., Villora-Picó J.J., Gu S., Sepúlveda- Escribano A., Reina T.R. // Applied Catalysis A: General. 2020. V. 593. Art. 117442. DOI: 10.1016/j.apcata.2020.117442.

14. Bobadilla L.F., Santos J.L., Ivanova S., Odriozola J.A., Urakawa A. // ACS Catalysis. 2018. V. 8. № 8. P. 7455—7467. DOI: 10.1021/acscatal.8b02121.

15. Ishito N., Hara K., Nakajima K., Fukuoka A. // Journal of Energy Chemistry. 2016. V. 25. № 2. P. 306—310. DOI: 10.1016/j.jechem.2015.12.005.

16. Tang R., Zhu Z., Li C., Xiao M., Wu Z., Zhang D., Zhang C., Xiao Y., Chu M., Genest A. // ACS Materials Letters. 2021. V. 3. № 12. P. 1652—1659. DOI: 10.1021/acsmaterialslett.1c00523.

17. Yan Y., Wang Q., Jiang C., Yao Y., Lu D., Zheng J., Dai Y., Wang H., Yang Y. // Journal of Catalysis. 2018. V. 367. P. 194—205. DOI: 10.1016/j.jcat.2018.08.026.

18. Chen X., Su X., Liang B., Yang X., Ren X., Duan H., Huang Y., Zhang T. // Journal of Energy Chemistry. 2016. V. 25. № 6. P. 1051—1057. DOI: 10.1016/j.jechem.2016.11.011.

19. Kim S.S., Lee H.H., Hong S.C. // Applied Catalysis B: Environmental. 2012. V. 119. P. 100—108. DOI: 10.1016/j.apcatb.2012.02.023.

20. Wang L., Liu H., Chen Y., Yang S. // International Journal of Hydrogen Energy. 2017. V. 42. № 6. P. 3682—3689. DOI:10.1016/j.ijhydene.2016.07.048.

21. Wang L., Liu H. // Catalysis Today. 2018. V. 316. P. 155—161. DOI: 10.1016/j.cattod.2018.04.015.

22. Yang L., Pastor-Pérez L., Gu S., Sepúlveda-Escribano A., Reina T. // Applied Catalysis B: Environmental. 2018. V. 232. P. 464—471. DOI: 10.1016/j.apcatb.2018.03.091.

23. Lu B., Kawamoto K. // Journal of Environmental Chemical Engineering. 2013. V. 1. № 3. P. 300—309. DOI: 10.1016/j.jece.2013.05.008.

24. Kim D.H., Han S.W., Yoon H.S., Kim Y.D. // Journal of Industrial Engineering Chemistry. 2015. V. 23. P. 67—71. DOI:10.1016/j.jiec.2014.07.043.

25. Chen C.-S., Cheng W.-H., Lin S.-S. // Applied Catalysis A: General. 2004. V. 257. № 1. P. 97—106. DOI: 10.1016/S0926-860X(03)00637-9.

26. Galván C.Á., Schumann J., Behrens M., Fierro J.L.G., Schlögl R., Frei E. // Applied Catalysis B: Environmental. 2016. V. 195. P. 104—111. DOI: 10.1016/j.apcatb.2016.05.007.

27. Ebrahimi P., Kumar A., Khraisheh M. // International Journal of Hydrogen Energy. 2022. V. 47. № 97. P. 41259—41267. DOI:10.1016/j.ijhydene.2021.12.142.

28. Xu J., Gong X., Hu R., Liu Z.-W., Liu Z.-T. // Molecular Catalysis. 2021. V. 516. Art. 111954. DOI: 10.1016/j.mcat.2021.111954.

29. Savost’yanov A.P., Yakovenko R.Y., Narochnyi G.B., Bakun V.G., Sulima S.I., Yakuba E.S., Mitchenko S.A. // Kinetics and Catalysis. 2017. V. 58. P. 81—91. DOI: 10.1134/S0023158417010062.

30. Савостьянов А.П., Яковенко Р.Е., Нарочный Г.Б., Бакун В.Г., Меркин А.А. // Известия высших учебных заведений. Химия и химическая технология. 2018. T. 61. № 9-10. C. 53—58. DOI: 10.6060/ivkkt.20186109-10.5864a.

31. Дульнев А.В., Обысов А.В. Опыт промышленной эксплуатации и пути совершенствования нанесенных Ni-катализаторов риформинга природного газа // Катализ в промышленности. 2011. № 4. C. 71—77.

32. Голосман Е.З., Дульнев А.В., Ефремов В.Н., Круглова М.А., Лунин В.В., Обысов М.А., Поливанов Б.И., Ткаченко И.С., Ткаченко С.Н. // Катализ в промышленности. 2017. № 6. C. 487—509. DOI: 10.18412/1816-0387-2017-6-487-509.

33. Комова З.В., Зрелова И.П., Вейнбендер А.Я., Шкитина В.И., Крендель А.И., Шаркина В.И., Боевская Е.А. // Катализ в промышленности. 2007. № 5. C. 43—50.

34. Liu H.-Z., Li X.-N., Hu Z.-N. // Applied Catalysis A: General. 1996. T. 142, № 2. C. 209—222. DOI: 10.1016/0926-860X(96)00047-6.

35. Ay S., Ozdemir M., Melikoglu M. // Chemical Engineering Research. 2021. V. 175. P. 146—160. DOI: 10.1016/j.cherd.2021.08.039.

36. Jozwiak W., Kaczmarek E., Maniecki T., Ignaczak W., Maniukiewicz W. // Applied Catalysis A: General. 2007. V. 326. № 1. P. 17—27. DOI: 10.1016/j.apcata.2007.03.021.

37. Xiujin Y., Bingyu L., Jianxin L., Rong W., Kemei W. // Journal of Rare Earths. 2008. V. 26. № 5. P. 711—716. DOI: 10.1016/S1002-0721(08)60168-4.

38. Lin H.-Y., Chen Y.-W. // Materials Chemistry Physics. 2004. V. 85. № 1. P. 171—175. DOI: 10.1016/j.matchemphys.2003.12.028.

39. Wong L., Tang L., Scarlett N.V., Chiang K., Patel J., Burke N., Sage V. // Applied Catalysis A: General. 2017. V. 537. P. 1—11. DOI: 10.1016/j.apcata.2017.02.022.

40. Яковенко Р.Е., Нарочный Г.Б., Зубков И.Н., Непомнящих Е.В., Савостьянов А.П. // Кинетика и катализ. 2019. T. 60. № 2. C. 235—244. DOI: 10.1134/S0453881119020163.

41. Караваев М.М., Леонов В.Е., Попов И.Г., Шепелев Е.Т. Технология синтетического метанола. Под ред. Караваева М.М. М.: Химия, 1984. 240 с.


Review

For citations:


Saliev A.N., Il'in V.B., Timokhina M.A., Dul'nev A.V., Savost'yanov A.P., Yakovenko R.E. Catalytic reduction of carbon dioxide on industrial catalysts. Kataliz v promyshlennosti. 2024;24(3):6-15. (In Russ.) https://doi.org/10.18412/1816-0387-2024-3-6-15

Views: 348


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)