

Determination of the conditions of technologically optimized reduction of high-performance Fischer–Tropsch synthesis catalysts
https://doi.org/10.18412/1816-0387-2024-3-60-70
Abstract
The activation stage of high-performance cobalt catalysts for Fischer–Tropsch synthesis has been studied, taking into account the transformation of emerging structures and the presence of a percolation heat-conducting network of metallic aluminum. The influence of temperature, process duration, composition of the reducing gas, as well as its volumetric velocity on the degree of reduction and surface area of the active component of the catalyst was studied. These characteristics were determined by low- and high-temperature oxygen titration in a chromatographic-type sorption unit, as well as using temperature-programmed reduction. The possibility of reducing the temperature and concentration of hydrogen in the gas to achieve the required parameters during reduction to obtain a high-performance catalytic system has been experimentally demonstrated. Its performance in Fischer–Tropsch synthesis (CO conversion, liquid hydrocarbon productivity) is comparable or better than that achieved on a catalyst reduced under standard conditions.
About the Authors
I. G. SolomonikRussian Federation
V. Z. Mordkovich
Russian Federation
References
1. Schulz H. // Applied Catalysis A: General. 1999. V. 186. № 1-2. Р. 3—12.
2. Dry M.E. // Catalysis Science and Technology. 1981. V. 1. P. 159—255.
3. Steynberg A.P. // Stud. Surf. Sci. Catal. 2004. V. 152. P. 1—63.
4. Witchers Jr. H.P., Eliezer K.F., Mitchell J.W. // Ind. Eng. Chem. Res. 1990. Vol. 29. P. 1807—1814.
5. Iglesia E.I. // Appl. Catal. A. 1997. Vol. 161. P. 59—78. DOI: 10. 1016/S0926-860X(97)00186-5.
6. Brady R.C., Pettit R.J. // J. Am. Chem. Soc. 1981. Vol. 103. P. 1287—1289.
7. Mordkovich V.Z., Ermolaev V.S., Mitberg E.B., Sineva L.V., Solomonik I.G., Ermolaev I.S., Asalieva E.Yu. // Research in Chemical Intermediates, 2015. Vol. 41. № 12. Р. 9539—9550. DOI: 10. 1007/s11164-015-1978-5.
8. Asalieva E., Sineva L., Sinichkina S., Solomonik I., Gryaznov K., Pushina E., Kulchakovskaya E., Kulnitskiy B., Ovsyannikov D., Mordkovich V. // Applied Catalysis A: General, 2020. V. 601. Art. 117639. https://doi.org/10.1016/j.apcata.2020.117639
9. Пат. РФ № 2414300 опубл. 2011.
10. https://ru. infratechnology. ru
11. Lapidus A.L., Krylova A.Yu., Kazanskii V.B., Borovkov, A.Yu., Zaitsev A.V., Rathouslj J., Zukal A., Jan Edlkovi M. // Appl. Catal. 1991. V. 73. P. 65.
12. Solomonik I.G., Gryaznov K.O., Mitberg E.B., Mordkovich V.Z. // Applied Research. 2023. V. 2. Art. e202200029. https://doi.org/10.1002/appl.202200029
13. Sexton B.A., Hughes A.E., Turney T.W. // J. Catal. 1986. V. 97. P. 390—406.
14. Choi J.G. // Cat. Lett. 1995. V. 35. P. 291—296.
15. Jongsomjit B., Panpranot J., Goodwin Jr. J.G. // J. Catal. 2001. V. 204. P. 98.
16. Fischer–Tropsch Synthesis, Catalysts And Catalysis / Edited by B.H. Davis, M.L. Occelli. Atlanta: Elsevier, 2006. Vol. 163. P. 273.
17. Chernavskii P.A., Pankina G.A., Lunin V.V. // Catal. Lett. 2000. V. 66. P. 121—124.
18. Зайцев А.В., Козлова Г.В., Боровков В.Ю. // Изв. АН СССР. Сер. хим. 1990. T. 11. C. 2640.
19. Лапидус А.Л., Крылова А.Ю., Херхеулидзе М.Н. // Химия твердого топлива, 1997. Т. 1. С. 50—58.
20. Ngamcharussrivichai C., Liu X., Li X., Vitidsant T., Fujimoto K. // Fuel. 2007. V. 86 P. 50—59.
21. Bechara R., Balloy D., Vanhore D. //Appl. Cat. A:General. 2001V. 207. P. 343—353.
22. Xiong H., Zhang Y., Liew K., Li J. // J. Mol. Catal.: Chemical. 2005. V. 231. P. 145—151.
23. Панкина Г.В., Чернавский П.А., Лермонтов А.С., Лунин В.В. // Нефтехимия. 2001. T. 41. № 5. C. 348—353.
24. Das T.K., Jacobs G., Patterson P.M., Conner W.A., Li J., Davis B.H. // Fuel. 2003. V. 82. P. 805—815.
25. Int. Pat. 083817 (GB). 2002.
26. Moen A., Nicholson D.G., Ronning M., Emerich H. // J. of Mat. Chem. 1998. V. 8. № 11. P. 2533—2539.
27. Пат. РФ № 2 445 161. опубл. 2012.
28. WO-А-2006/021754.
29. Phathutshedzo R. Khangale, Reinout Meijboom, Kalala Jalama // Proceedings of the World Congress on Engineering 2014. V. II, WCE 2014, July 2—4, 2014, London, U.K.
30. Phathutshedzo R. Khangale, Reinout Meijboom, Kalala Jalama // Bulletin of Chemical Reaction Engineering & Catalysis, 2019. V. 14. № 1. P. 35—41.
31. Теплопередача и гидродинамическое сопротивление. Справочное пособие. Ред. С.С. Кутателадзе. М.: Энерго-атомиздат, 1990.
Review
For citations:
Solomonik I.G., Mordkovich V.Z. Determination of the conditions of technologically optimized reduction of high-performance Fischer–Tropsch synthesis catalysts. Kataliz v promyshlennosti. 2024;24(3):60-70. (In Russ.) https://doi.org/10.18412/1816-0387-2024-3-60-70