Preview

Kataliz v promyshlennosti

Advanced search

Catalysts based on carbon material Sibunit for deep oxidation of organic toxicants in aqueous solutions. (1) The surface properties of oxidized Sibunit

Abstract

There is result presentation of the first time to conduct systematic studies of the effect of conditions of oxidative treatment promising for oxidative treatment of industrial waste carbon material series Sibunit on the chemical composition of its surface and catalytic properties in reactions of deep oxidation of organic toxicants in aqueous solutions. In this first article, we consider the modification of surface properties and texture «Sibunit-4» with using different methods of oxidative treatment and using as oxidants nitric acid, sodium hypochlorite, hydrogen peroxide and oxygen. Chemical state of the oxidized Sibunit and its texture is investigated by complex of physical and chemical methods (XPS, acid-base titration with bases of varying strength, by pH measuring of the suspension and the point of zero charge, low-temperature adsorption of N2). It is shown that, depending on the method of oxidative treatment Sibunit we can get the samples, which differ not only concentration but also the nature of oxygen-containing groups on the surface.

About the Authors

O. P. Taran
Boreskov Institute of Catalysis SB RAS, Novosibirsk
Russian Federation


E. M. Polyanskaya
Boreskov Institute of Catalysis SB RAS, Novosibirsk; Institut de recherches sur la catalyse et l’environnement de Lyon (Université de Lyon)
Russian Federation


O. L. Ogorodnikova
Boreskov Institute of Catalysis SB RAS, Novosibirsk
Russian Federation


C. Descorme
Institut de recherches sur la catalyse et l’environnement de Lyon (Université de Lyon)
France


M. Besson
Institut de recherches sur la catalyse et l’environnement de Lyon (Université de Lyon)
France


V. N. Parmon
Boreskov Institute of Catalysis SB RAS, Novosibirsk; Novosibirsk State University
Russian Federation


References

1. Luck F. // Catalysis Today. 1999. Vol. 53. № 1. P. 81.

2. Bhargava S.K., Tardio J. et al. // Industrial & Engineering Chemistry Research. 2006. Vol. 45. № 4. P. 1221.

3. Stüber F, Font J. et al. // Topics in Catalysis. 2005. Vol. 33. № 1—4. P. 3.

4. Neyens E., Baeyens J. // Journal of Hazardous Materials B. 2003. Vol. 98. № 1—3. P. 33.

5. Andreozzi R., Caprio V. et al. // Catalysis Today. 1999. Vol.53. № 1. P. 51.

6. Pirkanniemi K., Sillanpää М. // Chemosphere. 2002. Vol. 48. № 10. P.1047.

7. Santiago M., Stüber F. et al. // Carbon. 2005. Vol. 43. № 10. P. 2134.

8. Rey A., Faraldos M. et al. // Industrial and Engineering Chemistry Research. 2008. Vol. 47. № 21. P. 8166.

9. Huang H.-H., Lu M.-C., Chen J.-N., Lee C.-T. // Journal of Environmental Science and Health. Part A. 2003. Vol. 38. № 7. P. 1233.

10. Pigamo A., Besson M. et al. // Carbon. 2002. Vol. 40. P. 1267.

11. Oliveira L.C.A., Silva C.N., Yoshida M.I., Lago R.M. // Carbon. 2004. Vol. 42. № 11. Р. 2279.

12. Moreno-Castilla C., Ferro-Garcia M.A. et al. // Langmuir. 1995. Vol. 11. № 11. P. 4386.

13. Pradhan B.K., Sandel N.K. // Carbon. 1999. Vol. 37. № 8. P. 1323.

14. Kelemen S.R., Freund H. // Energy&Fuels. 1988. Vol. 2. № 2. Р. 111.

15. Ando T., Inoue S. et al. // Journal of the Chemical Society Faraday Transactions. 1993. Vol. 89. № 4. P. 749.

16. Фенелонов В.Б. Пористый углерод. Новосибирск: ИК СО РАН, 1995. С. 301.

17. Aguilar C., Garcia R., Soto-Garrido G., Arriagada R. // Applied Catalysis B: Environment. 2003. Vol. 46. № 2. P. 229.

18. Gallezot P., Chaumet S., Perrard A., Isnard P. // Journal of Catalysis. 1997. Vol. 168. № 1. P. 104.

19. Haydar S., Moreno-Castilla C. et al. // Carbon. 2000. Vol. 38. № 9. P. 1297.

20. Preočanin T., Kallay N. // Croatica chemica acta. 1998. Vol. 71. P. 1117.

21. Ania C.J., Parra J.B., Pis J.J. // Fuel Processing Technology. 2002. Vol. 79. P. 265.

22. Zazo J.A., Fraile A.F. et al. // Catalysis Today. 2009. Vol. 143. № 3-4. P. 341.

23. Pels J.R., Kapteijn F. et al. // Carbon. 1995. Vol. 33. № 11. Р. 1641.

24. Wildgoose G.G., Lawrence N.S. // Journal of Materials Chemistry. 2005. Vol. 15. № 9. Р. 953.

25. Khalil L.B., Girdis B.S., Tawfik T.A.M. // Journal of Chemical Technology & Biotechnology. 2001. Vol. 76. № 11. P. 1132.

26. Tseng H.-H., Wey M.-Y. // Chemosphere. 2006. Vol. 62. № 5. P. 756.

27. Houchin M.R., Warren L.J. // Colloids and Surfaces. 1985. Vol. 16. P. 117.

28. Moriwaki H., Yoshikawa Y., Morimoto T. // Langmuir. 1990. Vol.6. № 4. Р. 847.

29. Nouri S., Haghseresht F. // Adsorption. 2004. Vol. 10. P. 69.

30. Хохлова Т.Д., Ле Тхи Хиен // Вестник Московского университета. Серия 2. Химия. 2007. Т.48. № 3. С. 157.

31. Lopez-Ramos M.V., Stoeckli F. // Carbon. 1999. Vol. 37. № 8. P. 1215.

32. Rey A., Faraldos M. et al. // Applied Catalysis B: Environment. 2009. Vol. 86. № 1—2. P. 69.


Review

For citations:


Taran O.P., Polyanskaya E.M., Ogorodnikova O.L., Descorme C., Besson M., Parmon V.N. Catalysts based on carbon material Sibunit for deep oxidation of organic toxicants in aqueous solutions. (1) The surface properties of oxidized Sibunit. Kataliz v promyshlennosti. 2010;(6):48-54.

Views: 17


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)