Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Structured catalysts for steam and steam-air conversion of ethanol into synthesis gas: I. Preparation and catalytic properties

https://doi.org/10.18412/1816-0387-2024-6-13-23

Abstract

Steam reforming and autothermal reforming of ethanol produce synthesis gas suitable for both powering solid oxide fuel cells and serving as a feedstock for chemical industry applications. For these reactions to occur effectively, heat transfer must be controlled. In the case of endothermic steam reforming of ethanol, the problem of heat transfer from the reactor walls to the catalyst bed arises. For thermoneutral autothermal reforming (steam-air conversion) of ethanol, the problem arises of redistributing the heat released in the front part of the catalyst layer as a result of the oxidation of ethanol with oxygen along the catalyst layer to compensate for the endothermic effect of steam reforming of ethanol. To solve these problems, structured catalysts based on heat-conducting substrates—metal meshes, foam metals, and other supports—are well suited. Such catalysts are a complex composite material with a multi-level structure “structured metal substrate-structural oxide component-active oxide-nanoparticles of metals or alloys”, which combines the functions of a heat exchanger, a flow distributor and the catalyst itself. This work presents the results of the preparation of Pt, Rh, Pd, Ru, Ni, and Co-containing structured catalysts supported on a FeCrAl mesh support and the study of their catalytic properties.

About the Authors

V. N. Rogozhnikov
Boreskov Institute of Catalysis, Novosibirsk
Russian Federation


D. I. Potemkin
Boreskov Institute of Catalysis, Novosibirsk
Russian Federation


O. M. Stonkus
Boreskov Institute of Catalysis, Novosibirsk
Russian Federation


K. I. Shefer
Boreskov Institute of Catalysis, Novosibirsk
Russian Federation


A. N. Salanov
Boreskov Institute of Catalysis, Novosibirsk
Russian Federation


V. P. Pakharukova
Boreskov Institute of Catalysis, Novosibirsk
Russian Federation


P. V. Snytnikov
Boreskov Institute of Catalysis, Novosibirsk
Russian Federation


References

1. Martinelli M., Castro J. D., Alhraki N., Matamoros M. E., Kropf A. J., Cronauer D. C., Jacobs G., Effect of sodium loading on Pt/ZrO2 during ethanol steam reforming // Appl. Catal. A Gen. 2021. Vol. 610. P. 117947. https://doi.org/10.1016/j.apcata.2020.117947.

2. Martinelli M., Watson C.D., Jacobs G. Sodium doping of Pt/m-ZrO2 promotes C–C scission and decarboxylation during ethanol steam reforming // Int. J. Hydrogen Energy. 2020. Vol. 45, № 36. P. 18490-18501. https://doi.org/10.1016/j.ijhydene.2019.08.111

3. Kourtelesis M. et al. The effects of support morphology on the performance of Pt/CeO2 catalysts for the low temperature steam reforming of ethanol // Appl. Catal. B Environ. 2021. Vol. 284. P. 119757. https://doi.org/10.1016/j.apcatb.2020.119757

4. El Doukkali M. et al. Bioethanol/glycerol mixture steam reforming over Pt and PtNi supported on lanthana or ceria doped alumina catalysts // Int. J. Hydrogen Energy. 2012. Vol. 37, № 10. P. 8298-8309. https://doi.org/10.1016/j.ijhydene.2012.02.154

5. Ruocco C. et al. Experimental study of the oxidative steam reforming of fuel grade bioethanol over Pt–Ni metallic foam structured catalysts // Int. J. Hydrogen Energy. 2022. Vol. 48. № 32. P. 11943-11955. https://doi.org/10.1016/j.ijhydene.2022.05.276

6. Palma V. et al. Ethanol steam reforming over bimetallic coated ceramic foams: Effect of reactor configuration and catalytic support // Int. J. Hydrogen Energy. 2015. Vol. 40, № 37. P. 12650-12662. https://doi.org/10.1016/j.ijhydene.2015.07.138

7. Martínez A.H. et al. Elucidation of the role of support in Rh/perovskite catalysts used in ethanol steam reforming reaction // Catal. Today. 2021. Vol. 372. P. 59-69. https://doi.org/10.1016/j.cattod.2020.12.013

8. Le Valant A. et al. Effect of higher alcohols on the performances of a 1%Rh/MgAl2O4/Al2O3 catalyst for hydrogen production by crude bioethanol steam reforming // Int. J. Hydrogen Energy. 2011. Vol. 36, № 1. P. 311-318. https://doi.org/10.1016/j.ijhydene.2010.09.039

9. Lang L. et al. Catalytic activities of K-modified zeolite ZSM-5 supported rhodium catalysts in low-temperature steam reforming of bioethanol // Int. J. Hydrogen Energy. 2015. Vol. 40, № 32. P. 9924-9934. https://doi.org/10.1016/j.ijhydene.2015.06.016

10. Cai W. et al. Autothermal reforming of ethanol for hydrogen production over an Rh/CeO2 catalyst // Catal. Today. 2008. Vol. 138, № 3–4. P. 152-156. https://doi.org/10.1016/j.cattod.2008.05.019

11. Cifuentes B. et al. Bioethanol steam reforming over monoliths washcoated with RhPt/CeO2–SiO2: The use of residual biomass to stably produce syngas // Int. J. Hydrogen Energy. 2021. Vol. 46, № 5. P. 4007-4018. https://doi.org/10.1016/j.ijhydene.2020.10.271

12. Le Valant A. et al. Preparation and characterization of bimetallic Rh-Ni/Y2O3-Al2O3 for hydrogen production by raw bioethanol steam reforming: influence of the addition of nickel on the catalyst performances and stability // Appl. Catal. B Environ. 2010. Vol. 97, № 1–2. P. 72-81. https://doi.org/10.1016/j.apcatb.2010.03.025

13. Divins N.J. et al. Bio-ethanol steam reforming and autothermal reforming in 3-μm channels coated with RhPd/CeO2 for hydrogen generation // Chem. Eng. Process. Process Intensif. 2013. Vol. 64. P. 31-37. https://doi.org/10.1016/j.cep.2012.10.018

14. Rass-Hansen J. et al. Steam reforming of technical bioethanol for hydrogen production // Int. J. Hydrogen Energy. 2008. Vol. 33, № 17. P. 4547-4554. https://doi.org/10.1016/j.ijhydene.2008.06.020

15. Weng S.F., Wang Y.H., Lee C.S. Autothermal steam reforming of ethanol over La2Ce2-xRuxO7 (x=0-0.35) catalyst for hydrogen production // Appl. Catal. B Environ. 2013. Vol. 134–135. P. 359-366. https://doi.org/10.1016/j.apcatb.2013.01.025

16. Chen H. et al. Hydrogen production via autothermal reforming of ethanol over noble metal catalysts supported on oxides // J. Nat. Gas Chem. 2009. Vol. 18, № 2. P. 191-198. https://doi.org/10.1016/S1003-9953(08)60106-1

17. Snytnikov P. V. et al. Catalysts for hydrogen production in a multifuel processor by methanol, dimethyl ether and bioethanol steam reforming for fuel cell applications // International Journal of Hydrogen Energy. 2012. Vol. 37, № 21. P. 16388-16396. https://doi.org/10.1016/j.ijhydene.2012.02.116

18. Lou S. et al. A-site deficient titanate perovskite surface with exsolved nickel nanoparticles for ethanol steam reforming // Chem. Eng. Sci. Elsevier LTD, 2023. Vol. 274. P. 118690. https://doi.org/10.1016/j.ces.2023.118690

19. Da Costa-Serra J.F. et al. Bioethanol steam reforming on Ni-based modified mordenite. Effect of mesoporosity, acid sites and alkaline metals // International Journal of Hydrogen Energy. 2012. Vol. 37, № 8. P. 7101-7108. https://doi.org/10.1016/j.ijhydene.2011.10.086

20. Wang S. et al. Hydrogen production from the steam reforming of bioethanol over novel supported Ca/Ni-hierarchical Beta zeolite catalysts // Int. J. Hydrogen Energy. 2021. Vol. 46, № 73. P. 36245-36256. https://doi.org/10.1016/j.ijhydene.2021.08.170

21. Da Costa-Serra J.F. et al. Ni and Co-based catalysts supported on ITQ-6 zeolite for hydrogen production by steam reforming of ethanol // Int. J. Hydrogen Energy. 2022. Vol. 48, № 68. P. 26518-26525. https://doi.org/10.1016/j.ijhydene.2022.11.128

22. Aker V., Ayas N. Boosting hydrogen production by ethanol steam reforming on cobalt-modified Ni–Al2O3 catalyst // Int. J. Hydrogen Energy. Hydrogen Energy Publications LLC, 2023. Vol. 48, № 60. P. 22875-22888. https://doi.org/10.1016/j.ijhydene.2022.12.310

23. Benito M. et al. Zirconia supported catalysts for bioethanol steam reforming: Effect of active phase and zirconia structure // J. Power Sources. 2007. Vol. 169, № 1. P. 167-176. https://doi.org/10.1016/j.jpowsour.2007.01.047

24. Llorca J. et al. Co-free hydrogen from steam-reforming of bioethanol over ZnO-supported cobalt catalysts: Effect of the metallic precursor // Appl. Catal. B Environ. 2003. Vol. 43, № 4. P. 355-369. https://doi.org/10.1016/S0926-3373(02)00326-0

25. Ruocco C. et al. Stability of bimetallic Ni/CeO2–SiO2 catalysts during fuel grade bioethanol reforming in a fluidized bed reactor // Renew. Energy. 2022. Vol. 182. P. 913-922. https://doi.org/10.1016/j.renene.2021.10.064

26. Nieto-Márquez A. et al. Autothermal reforming and water-gas shift double bed reactor for H2 production from ethanol // Chem. Eng. Process. - Process Intensif. 2013. Vol. 74. P. 14-18. https://doi.org/10.1016/j.cep.2013.10.006

27. Xue Z. et al. Promoting effects of lanthanum oxide on the NiO/CeO2 catalyst for hydrogen production by autothermal reforming of ethanol // Catal. Commun. 2018. Vol. 108. P. 12-16. https://doi.org/10.1016/j.catcom.2018.01.024

28. Chen H. et al. Autothermal reforming of ethanol for hydrogen production over perovskite LaNiO3 // Chem. Eng. J. 2010. Vol. 160, № 1. P. 333-339. https://doi.org/10.1016/j.cej.2010.03.054

29. Рогожников В.Н. Разработка способа формирования слоя Al2O3 на структурированном металлическом носителе для каталитических применений: дисс. канд. хим. наук: 02.00.15 / Рогожников Владимир Николаевич. -Новосибирск, 2017. - 151.

30. Рогожников В.Н., Потемкин Д.И., Стонкус О.М., Шефер К.И., Саланов А.Н., Пахарукова В.П., Снытников П.В. Структурированные катализаторы паровой и паровоздушной конверсии этанола в синтез-газ: II. Физико-химические свойства // Катализ в промышленности, 2024. Т.24, № 6, С.

31. Патент RU 2653360 C1, опубл. 08.05.2018

32. В.А. Кириллов, Н.А. Кузин, Ю.И. Амосов, В.В. Киреенков, В.А. Собянин. Катализаторы конверсии углеводородных и синтетических топлив для бортовых генераторов синтез газа // Катализ в промышленности. 2011. Т. 1. С. 60-67.

33. В. А. Кириллов, А. Б. Шигаров, Н. А. Кузин, В. В. Киреенков, Ю. И. Амосов, А. В. Самойлов, В. А. Бурцев. Термохимическое преобразование топлив в водородсодержащий газ за счет рекуперированного тепла двигателей внутреннего сгорания // Теоретические основы химической технологии. 2013. Т. 47. № 5. С. 503-517. https://doi.org/10.7868/s0040357113050059

34. A. A. Lytkina*, A. B. Ilin, and A. B. Yaroslavtsev. Study of Methanol Steam Reforming and Ethanol Conversion in Conventional and Membrane Reactors // Petroleum Chemistry. 2016. V. 56. № 11. P. 1048-1055. https://doi.org/10.1134/S0965544116110104

35. P. Frontera, A. Malara, M. Boaro, A. Felli, A. Trovarelli, A. Macario. Ruthenium/nickel ex-solved perovskite catalyst for renewable hydrogen production by autothermal reforming of ethanol // Chemical Engineering Research and Design. 2023. V. 194. P. 401-409. https://doi.org/10.1016/j.cherd.2023.04.059

36. М.С. Якимова, В.Ф. Третьяков, Н.А. Французова, Л.О. Ярыгина. Получение водородсодержащего газа паровой конверсией этанола // Вестник МИТХТ. 2010. Т. 5. № 4. С. 93-97.


Review

For citations:


Rogozhnikov V.N., Potemkin D.I., Stonkus O.M., Shefer K.I., Salanov A.N., Pakharukova V.P., Snytnikov P.V. Structured catalysts for steam and steam-air conversion of ethanol into synthesis gas: I. Preparation and catalytic properties. Kataliz v promyshlennosti. 2024;24(6):13-23. (In Russ.) https://doi.org/10.18412/1816-0387-2024-6-13-23

Views: 136


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)