Preview

Катализ в промышленности

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Доступ платный или только для Подписчиков

Прогресс в разработке оксидных катализаторов для неокислительного дегидрирования пропана. Альтернатива промышленным катализаторам на основе Pt и Cr (Обзор)

https://doi.org/10.18412/1816-0387-2025-2-18-32

Аннотация

Каталитическое дегидрирование пропана является целевым и наиболее эффективным промышленным способом получения пропилена. Практическая значимость этого способа неуклонно растет с учетом относительной доступности пропана в качестве исходного сырья. В обзоре рассмотрены перспективы разработки катализаторов дегидрирования пропана нового поколения на основе оксидов переходных металлов (Zn, Ga, Co и V), которые могут конкурировать с коммерческими платиновыми и хромовыми катализаторами. Обзор анонсирует цикл публикаций по данной тематике в рамках выполнения научных исследований, поддержанных Российским научным фондом.

Об авторах

К. Ю. Колтунов
Институт катализа СО РАН, Новосибирск
Россия


В. В. Каичев
Институт катализа СО РАН, Новосибирск
Россия


В. И. Соболев
Институт катализа СО РАН, Новосибирск
Россия


Список литературы

1. Zimmermann H. Propene. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co., KGaA: Weinheim, Germany, 2013. https://doi.org/10.1002/14356007.a22_211.pub3

2. Sattler J.J.H.B., Ruiz-Martinez J., Santillan-Jimenez E., Weckhuysen B.M. // Chem. Rev. 2014. V. 114. P. 10613–10653. https://doi.org/10.1021/cr5002436.

3. Hu Z.-P., Yang D., Wang Z., Yuan Z.-Y. // Chin. J. Catal. 2019. V. 40. P. 1233–1254. https://doi.org/10.1016/S1872-2067(19)63360-7

4. Martino M., Meloni E., Festa G., Palma V. // Catalysts 2021. V. 11. 1070. https://doi.org/10.3390/catal11091070

5. Dong S., Altvater N.R., Mark L.O., Hermans I. // Appl. Catal. A 2021. V. 617. P. 118121. https://doi.org/10.1016/j.apcata.2021.118121

6. Chen S., Chang X., Sun G., Zhang T., Xu Y., Wang Y., Pei C., Gong J. // Chem. Soc. Rev. 2021. V. 50. P. 3315–3354. https://doi.org/10.1039/D0CS00814A

7. Otroshchenko T., Jiang G., Kondratenko V.A., Rodemerck U., Kondratenko E.V. // Chem. Soc. Rev. 2021. V. 50. P. 473–527. https://doi.org/10.1039/D0CS01140A

8. Dai Y., Gao X., Wang Q., Wan X., Zhou C., Yang Y. // Chem. Soc. Rev. 2021. V. 50. P. 5590–5630. https://doi.org/10.1039/D0CS01260B

9. Wang Y., Hu P., Yang J., Zhu Y.-A., Chen D. // Chem. Soc. Rev. 2021. V. 50. P. 4299–4358. https://doi.org/10.1039/D0CS01262A

10. Liu S., Zhang B., Liu G. // React. Chem. Eng. 2021. V. 6. P. 9–26. https://doi.org/10.1039/D0RE00381F

11. Ma Z.H., Wang J., Li S., Jiang A.J., Li J., An C.H., Sun L.Y. // IOP Conf. Ser.: Mater. Sci. Eng. 2019. V. 479. 012069. https://iopscience.iop.org/article/10.1088/1757-899X/479/1/012069

12. Phung T.K., Pham T.L.M., Vu K.B., Busca G. // J. Environ. Chem. Eng. 2021. V. 9. P. 105673. https://doi.org/10.1016/j.jece.2021.105673

13. Camacho-Bunquin J., Aich P., Ferrandon M., ‘‘Bean” Getsoian A., Das U., Dogan F., Curtiss L.A., Miller J.T., Marshall C.L., Hock A.S., Stair P.C. // J. Catal. 2017. V. 345. P. 170–182. https://doi.org/10.1016/j.jcat.2016.10.017

14. Liu G., Zeng L., Zhao Z.-J., Tian H., Wu T., Gong J. // ACS Catal. 2016. V. 6. P. 2158–2162. https://doi.org/10.1021/acscatal.5b02878

15. Schweitzer N.M., Hu B., Das U., Kim H., Greeley J., Curtiss L.A., Stair P.C., Miller J.T., Hock A.S. // ACS Catal. 2014. V. 4. P. 1091–1098. https://doi.org/10.1021/cs401116p

16. Sattler J.J., Gonzalez-Jimenez I.D., Luo L., Stears B.A., Malek A., Barton D.G., Kilos B.A., Kaminsky M.P., Verhoeven T.W.,

17. Koers E.J., Baldus M., Weckhuysen B.M. // Angew. Chem. Int. Ed. 2014. V. 53. P. 9251–9256. https://doi.org/10.1002/anie.201404460

18. Searles K., Siddiqi G., Safonova O.V., Coperet C. // Chem. Sci. 2017. V. 8. P. 2661–2666. https://doi.org/10.1039/C6SC05178B

19. Rodemerck U., Stoyanova M., Kondratenko E.V., Linke D. // J. Catal. 2017. V. 352. P. 256–263. https://doi.org/10.1016/j.jcat.2017.05.022

20. Sokolov S., Stoyanova M., Rodemerck U., Linke D., Kondratenko E.V. // J. Catal. 2012. V. 293. P. 67–75. https://doi.org/10.1016/j.jcat.2012.06.005

21. Liu G., Zhao Z.-J., Wu T., Zeng L., Gong J. // ACS Catal. 2016. V. 6. P. 5207–5214. https://doi.org/10.1021/acscatal.6b00893

22. Hu B., ‘‘Bean” Getsoian A., Schweitzer N.M., Das U., Kim H., Niklas J., Poluektov O., Curtiss L.A., Stair P.C., Miller J.T., Hock A.S. // J. Catal. 2015. V. 322. P. 24–37. https://doi.org/10.1016/j.jcat.2014.10.018

23. Hu B., Schweitzer N.M., Zhang G., Kraft S.J., Childers D.J., Lanci M.P., Miller J.T., Hock A.S. // ACS Catal. 2015. V. 5. P. 3494–3503. https://doi.org/10.1021/acscatal.5b00248

24. Zhang Y., Zhao Y., Otroshchenko T., Han S., Lund H., Rodemerck U., Linke D., Jiao H., Jiang G., Kondratenko E.V. // J. Catal. 2019. V. 371. P. 313–324. https://doi.org/10.1016/j.jcat.2019.02.012

25. Wang Y., Hu Z.-P., Lv X., Chen L., Yuan Z.-Y. // J. Catal. 2020. V. 385. P. 61–69. https://doi.org/10.1016/j.jcat.2020.02.019

26. Zhang B., Li G., Zhai Z., Chen D., Tian Y., Yang R., Wang L., Zhang X., Liu G. // AIChE J. 2021. V. 67. e17295. https://doi.org/10.1002/aic.17295

27. Chen S., Zhao Z.-J., Mu R., Chang X., Luo J., Purdy S.C., Kropf A.J., Sun G., Pei C., Miller J.T., Zhou X., Vovk E., Yang Y., Gong J. // Chem 2021. V. 7. P. 1–19. https://doi.org/10.1016/j.chempr.2020.10.008

28. Sun Q., Wang N., Fan Q., Zeng L., Mayoral A., Miao S., Yang R., Jiang Z., Zhou W., Zhang J., Zhang T., Xu J., Zhang P., Cheng J., Yang D.-C., Jia R., Li L., Zhang Q., Wang Y., Terasaki O., Yu J. // Angew. Chem. Int. Ed. 2020. V. 59. P. 19450–19459. https://doi.org/10.1002/anie.202003349

29. Gong T., Qin L., Lu J., Feng H. // Phys. Chem. Chem. Phys. 2016. V. 18. P. 601–614. https://doi.org/10.1039/C5CP05043J

30. Yuan Y., Lobo R.F. // ACS Catal. 2023. V. 13. P. 4971−4984. https://doi.org/10.1021/acscatal.2c05898

31. Liu X., Lv X., Song W., Zhang G., Guo X. // Ind. Eng. Chem. Res. 2024. V. 63. P. 121−129. https://doi.org/10.1021/acs.iecr.3c03168

32. Chen C., Hu Z., Ren J., Zhang S., Wang Z., Yuan Z.Y. // ChemCatChem 2019. V. 11. P. 868–877. https://doi.org/10.1002/cctc.201801708

33. Serykh A.I., Agafonov Y.A. // Mol. Catal. 2020. V. 493. P. 111055. https://doi.org/10.1016/j.mcat.2020.111055

34. Ma F., Chang Q.-Y., Yin Q., Sui Z.-J., Zhou X.-G., Chen D., Zhu Y.-A. // Catal. Sci. Technol. 2020. V. 10. P. 4938–4951. https://doi.org/10.1039/D0CY00609B

35. Zhao D., Guo K., Han S., Doronkin D.E., Lund H., Li J., Grunwaldt J.-D., Zhao Z., Xu C., Jiang G., Kondratenko E.V. // ACS Catalysis 2022. V. 12. P. 4608–4617. https://doi.org/10.1021/acscatal.1c05778

36. Zhao D., Gao M., Tian X., Doronkin D.E., Han S., Grunwaldt J.-D., Rodemerck U., Linke D., Ye M., Jiang G., Jiao H., Kondratenko E.V. // ACS Catalysis 2023. V. 13. P. 3356–3369. https://doi.org/10.1021/acscatal.2c05704

37. Xie Z., Xie X., Shi Q., M. Zhang, Li D., Zhang K., Song Y., Kong L., Fan X., Xiao X., Zhao Z. // ACS Appl. Nano Mater. 2023. V. 6. P. 20652–20659. https://doi.org/10.1021/acsanm.3c03243

38. Chai Y., Chen S., Chen Y., Wei F., Cao L., Lin J., Li L., Liu X., Lin S., Wang X., Zhang T. // J. Am. Chem. Soc. 2024. V. 146. P. 263–273. https://doi.org/10.1021/jacs.3c08616

39. Han S., Zhao D., Otroshchenko T., Lund H., Bentrup U., Kondratenko V. A., Rockstroh N., Bartling S., Doronkin D.E., Grunwaldt J.-D., Rodemerck U., Linke D., Gao M., Jiang G., Kondratenko E.V. // ACS Catal. 2020. V. 10. P. 8933– 8949. https://doi.org/10.1021/acscatal.0c01580

40. Zhang Y., Qi L., Nozik D., Dun C., Urban J.J., Bell A.T. // ACS Catalysis 2024. V. 14. P. 2787–2804. https://doi.org/10.1021/acscatal.3c05605

41. Han S., Zhao D., Kondratenko E.V. // Acc. Chem. Res. 2024. V. 57. P. 1264–1274. https://doi.org/10.1021/acs.accounts.4c00011

42. Li Y., Fu S., Zhang Q., Liu H., Wang Y. // Catalysts 2022. V. 12. P. 1371. https://doi.org/10.3390/catal12111371

43. Shao C.T., Lang W.Z., Yan X., Guo Y.J. // RSC Adv. 2017. V. 7. P. 4710–4723. https://doi.org/10.1039/C6RA27204E

44. Schreiber M.W., Plaisance C.P., Baumgärtl M., Reuter K., Jentys A., Bermejo-Deval R., Lercher J.A. // J. Am. Chem. Soc. 2018. V. 140. P. 4849–4859. https://doi.org/10.1021/jacs.7b12901

45. Mansoor E., Head-Gordon M., Bell A.T. // ACS Catal. 2018. V. 8. P. 6146–6162. https://doi.org/10.1021/acscatal.7b04295

46. Tan S., Kim S.J., Moore J.S., Liu Y., Dixit R.S., Pendergast J.G., Sholl D.S., Nair S., Jones C.W. // ChemCatChem 2016. V. 8. P. 214–221. https://doi.org/10.1002/cctc.201500916

47. Kwon H.C., Park Y., Park J.Y., Ryoo R., Shin H., Choi M. // ACS Catal. 2021. V. 11. P. 10767–10777. https://doi.org/10.1021/acscatal.1c02553

48. Praveen C.S., Borosy A.P., Copéret C., Comas-Vives A. // Inorg. Chem. 2021. V. 60. P. 6865−6874. https://dx.doi.org/10.1021/acs.inorgchem.0c03135

49. Chang Q.-Y., Wang K.-Q., Hu P., Sui Z.-J., Zhou X.-G., Chen D., Yuan W.-K., Zhu Y.-A. // AIChE J. 2020. V. 66. e16232. https://doi.org/10.1002/aic.16232

50. Abdelgaid M., Dean J., Mpourmpakis G. // Catal. Sci. Technol. 2020. V. 10. P. 7194–7202. https://doi.org/10.1039/D0CY01474E

51. Jiang P., Fu H., Ma H., Qian W., Zhang H., Ying W. // Catal. Lett. 2021. V. 151. P. 1894–1901. https://doi.org/10.1007/s10562-020-03452-0

52. Yuan Y., Lee J.S., Lobo R.F. // J. Am. Chem. Soc. 2022. V. 144. P. 15079−15092. https://doi.org/10.1021/jacs.2c03941

53. Zhang S., Zhang B., Song M., Xia L., Liu G. // Ind. Eng. Chem. Res. 2024. V. 63. P. 9299−9303. https://doi.org/10.1021/acs.iecr.4c00411

54. Carter J.H., Bere T., Pitchers J.R., Hewes D.G., Vandegehuchte B.D., Kiely C.J., Taylor S.H., Hutchings G.J. // Green Chem. 2021. V. 23. P. 9747−9799. https://doi.org/10.1039/D1GC03700E

55. Sun Y., Wu Y., Shan H., Li C. // Catal. Lett. 2015. V. 145. P. 1413–1419. https://doi.org/10.1007/s10562-015-1533-4

56. Hu B., Getsoian A., Schweitzer N.M., Das U., Kim H., Niklas J., Poluektov O., Curtiss L.A., Stair P.C., Miller J.T., Hock A.S. // J. Catal. 2015. V. 322. P. 24–37. http://dx.doi.org/10.1016/j.jcat.2014.10.018

57. Estes D.P., Siddiqi G., Allouche F., Kovtunov K.V., Safonova O.V., Trigub A.L., Koptyug I.V., Coperet C. // J. Am. Chem. Soc. 2016. V. 138. P. 14987–14997. https://doi.org/10.1021/jacs.6b08705

58. Hu B., Kim W.-G., Sulmonetti T.P., Sarazen M.L., Tan S., So J., Liu Y., Dixit R.S., Nair S., Jones C.W. // ChemCatChem 2017. V. 9. P. 3330–3337. https://doi.org/10.1002/cctc.201700647

59. Song S.J., Li J.. Wu Z.J., Zhang P., Sun Y.Q., Song W.Y., Li Z.X., Liu J. // AIChE J. 2022. V. 68. e17451. https://doi.org/10.1002/aic.17451

60. Dewangan N., Ashok J., Sethia M., Das S., Pati S., Kus H., Kawi S. // ChemCatChem 2019. V. 11. P. 4923–4934. https://doi.org/10.1002/cctc.201900924

61. Dai Y., Gu J., Tian S., Wu Y., Chen J., Li F., Du Y., Peng L., Ding W., Yang Y. // J. Catal. 2020. V. 381. P. 482–492. https://doi.org/10.1016/j.jcat.2019.11.026

62. Bian Z.F., Dewangan N., Wang Z.G., Pati S., Xi S.B., Borgna A., Kus H., Kawi S. // ACS Appl. Nano Mater. 2021. V. 4. P. 1112–1125. https://doi.org/10.1021/acsanm.0c02721

63. Wu L.Z., Ren Z.Z., He Y.S., Yang M., Yu Y.K., Liu Y.M., Tan L., Tang Y. // ACS Appl. Mater. Interfaces 2021. V. 13. P. 48934–48948. https://doi.org/10.1021/acsami.1c15892

64. Ren Z., He Y., Yang M., Deng H., Zhang Y., Yang H., Tang Z., Tan L., Tang Y., Wu L. // Mol. Catal. 2022. V. 530. P. 112580. https://doi.org/10.1016/j.mcat.2022.112580

65. Ge M., Chen X., Li Y., Wang J., Xu Y., Zhang L. // React. Kinet. Mech. Catal. 2020. V. 130. P. 241–256. https://doi.org/10.1007/s11144-020-01779-8

66. Jeon N., Oh J., Tayal A., Jeong B., Seo O., Kim S., Chung I., Yun Y.J. // J. Catal. 2021. V. 404. P. 1007–1016. https://doi.org/10.1016/j.jcat.2021.10.035

67. Gao Y., Peng L., Long J., Wu Y., Dai Y., Yang Y. // Micropor. Mesopor. Mater. 2021. V. 323. P. 111187. https://doi.org/10.1016/j.micromeso.2021.111187

68. Hu. Z.-P., Qin G., Han J., Zhang W., Wang N., Zheng Y., Jiang Q., Ji T.,Yuan Z.-Y., Xiao J., Wei Y., Liu Z. // J. Am. Chem. Soc. 2022. V. 144. P. 12127−12137. https://doi.org/10.1021/jacs.2c02636

69. Chen C., Zhang S.M., Wang Z., Yuan Z.Y. // J. Catal. 2020. V. 383. P. 77–87. https://doi.org/10.1016/j.jcat.2019.12.037

70. Li X.Y., Wang P.Z., Wang H.R., Li C.Y. // Appl. Surf. Sci. 2018. V. 441. P. 688–693. https://doi.org/10.1016/j.apsusc.2018.02.024

71. Wu Y., Long J., Wei S., Gao Y., Yang D., Dai Y., Yang Y. // Micropor. Mesopor. Mater. 2022. V. 341. P. 112115. https://doi.org/10.1016/j.micromeso.2022.112115

72. Li Y., Zhang Q., Fu S., Kondratenko V.A., Otroshchenko T., Bartling S., Zhang Y., Zanina A., Wang Y., Cui G., Zhou M., Zhao Z., Xu C., Jiang G., Kondratenko E.V. // Chem. Eng. J. 2023. V. 460. P. 14177. https://doi.org/10.1016/j.cej.2023.141778

73. Jacobson D., Freiser B. // J. Am. Chem. Soc. 1983. V. 105. P. 5197–5206. https://doi.org/10.1021/ja00354a003

74. Van Koppen P.A., Bowers M.T., Haynes C.L., Armentrout P.B. // J. Am. Chem. Soc. 1998. V. 120. P. 5704–5712. https://doi.org/10.1021/ja974372s

75. Xie J., Kammert J.D., Kaylor N., Zheng J.W., Choi E., Pham H.N., Sang X., Stavitski E., Attenkofer K., Unocic R.R., Datye A.K., Davis R.J. // ACS Catal. 2018. V. 8. P. 3875–3884. https://doi.org/10.1021/acscatal.8b00141

76. Cao T., Dai X., Li F., Liu W., Bai Y., Fu Y., Qi W. // ChemCatChem 2021. V. 13. P. 3067–3073. https://doi.org/10.1002/cctc.202100410

77. Wang Y., Suo Y., Ren J.-T., Wang Z., Yuan Z.-Y. // J. Colloid Interface Sci. 2021. V. 594. P. 113–121. https://doi.org/10.1016/j.jcis.2021.03.023

78. Li Y.-M., Liu Z.-Y., Zhang Q.-Y., Wang Y.-J., Cui G.-Q., Zhao Z., Xu C.-M., Jiang G.-Y. // Pet. Sci. 2023. V. 20. P. 559–568. https://doi.org/10.1016/j.petsci.2022.01.008

79. Chernov A.N., Sobolev V.I., Koltunov K.Yu. // Catal. Commun. 2022. V. 170. P. 106495. https://doi.org/10.1016/j.catcom.2022.106495

80. Chernov A.N., Sobolev V.I., Gerasimov E.Y., Koltunov K.Y. // Catalysts 2022. V. 12. P. 1262. https://doi.org/10.3390/catal12101262

81. Chernov A.N., Cherepanova S.V., Gerasimov E.Y., Prosvirin I.P., Zenkovets G.A., Shutilov A.A., Gorbunova A.S., Koltunov K.Y., Sobolev V.I. // Catalysts 2023. V. 13. P. 1419. https://doi.org/10.3390/catal13111419

82. Shi Q., Song Y., Li D., Wang Y., Xie Z., Fan X., Kong L., Xiao X., Zhao Z. // J. Catal. 2024. V. 433 P. 115472. https://doi.org/10.1016/j.jcat.2024.115472

83. Wang W., Wu Y., Liu T., Zhao Y., Qu Y., Yang R., Xue Z., Wang Z., Zhou F., Long J., Yang Z., Han X., Lin Y., Chen M., Zheng L., Zhou H., Lin X., Wu F., Wang H., Yang Y., Li Y., Dai Y., Wu Y. // ACS Catal. 2022. V. 12. P. 2632–2638. https://doi.org/10.1021/acscatal.1c05921

84. Zhang C.-W., Wen J., Wang L., Wang X.-G., Shi L. // New J. Chem. 2020. V. 44. P. 7450-7459. https://doi.org/10.1039/D0NJ00381F

85. Jeon N., Seo O., Oh J., Park J., Chung I., Kim J., Sakata O., Tayal A., Yun Y. // Appl. Catal. A 2021. V. 614. P. 118036. https://doi.org/10.1016/j.apcata.2021.118036

86. Zhao Z.-J., Wu T., Xiong C., Sun G., Mu R., Zeng L., Gong J. // Angew. Chem. Int. Ed. 2018. V. 57. P. 6791–6795. https://doi.org/10.1002/anie.201800123

87. Kaichev V.V., Chesalov Y.A., Saraev A.A., Tsapina A.M. // J. Phys. Chem. C 2019. V. 123. P. 19668−19680. https://doi.org/10.1021/acs.jpcc.9b04991

88. Ovsitser O., Schomaecker R., Kondratenko E.V., Wolfram T., Trunschke A. // Catal. Today 2012. V. 192. P. 16–19. https://doi.org/10.1016/j.cattod.2012.01.034

89. Sokolov S., Stoyanova M., Rodemerck U., Linke D., Kondratenko E.V. // Catal. Sci. Technol. 2014. V. 4. P. 1323–1332. https://doi.org/10.1039/C3CY01083J

90. Wu T., Liu G., Zeng L., Sun G., Chen S., Mu R., Gbonfoun S.A., Zhao Z.J., Gong J. // AIChE J. 2017. V. 63. P. 4911–4919. https://doi.org/10.1002/aic.15836

91. Gu Y., Liu H., Yang M., Ma Z., Zhao L., Xing W., Wu P., Liu X., Mintova S., Bai P., Yan Z. // Appl. Catal. B 2020. V. 274. P. 119089. https://doi.org/10.1016/j.apcatb.2020.119089

92. Chen C., Sun M., Hu Z., Liu Y., Zhang S., Yuan Z.-Y. // Chin. J. Catal. 2020. V. 41. P. 276–285. https://doi.org/10.1016/S1872-2067(19)63444-3

93. Xie Y., Luo R., Sun G., Chen S., Zhao Z.-J., Mu R., Gong J. // Chem. Sci. 2020. V. 11. 3845–3851. https://doi.org/10.1039/D0SC00690D

94. Wang G., Xu H., Lu K., Ding Z., Bing L. // Turk. J. Chem. 2020. V. 44. P. 112–124. https://doi.org/10.3906/kim-1907-53

95. Chen W., You K., Wei Y., Zhao F., Chen Z., Wu J., Ai Q., Luo H. // Ind. Eng. Chem. Res. 2021. V. 60. P. 18327–18336. https://doi.org/10.1021/acs.iecr.1c03935

96. Y. Li, Yu X., Zhang Q., Kondratenko V.A., Wang Y., Cui G., Zhou M., Xu C., Kondratenko E.V., Jiang G. // J. Catal. 2022. V. 413. P. 658–667. https://doi.org/10.1016/j.jcat.2022.07.017

97. Sun Z., Zhu Z., Zhang H., Chu C., Han D., Zhang J., Wang F., Bing L., Wang G. // Ind. Eng. Chem. Res. 2024. V. 63. P. 7614–7623. https://doi.org/10.1021/acs.iecr.4c00356

98. Bai P., Ma Z., Li T., Tian Y., Zhang Z., Zhong Z., Xing W., Wu P., Liu X., Yan Z. // ACS Appl. Mater. Interfaces 2016. V. 8. P. 25979–25990. https://doi.org/10.1021/acsami.6b07779


Рецензия

Для цитирования:


Колтунов К.Ю., Каичев В.В., Соболев В.И. Прогресс в разработке оксидных катализаторов для неокислительного дегидрирования пропана. Альтернатива промышленным катализаторам на основе Pt и Cr (Обзор). Катализ в промышленности. 2025;25(2):18-32. https://doi.org/10.18412/1816-0387-2025-2-18-32

For citation:


Koltunov K.Yu., Kaichev V.V., Sobolev V.I. Progress in the development of oxide catalysts for non-oxidative propane dehydrogenation. Alternative to Pt and Cr based industrial catalysts (review). Kataliz v promyshlennosti. 2025;25(2):18-32. (In Russ.) https://doi.org/10.18412/1816-0387-2025-2-18-32

Просмотров: 278


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)