

Progress in the development of oxide catalysts for non-oxidative propane dehydrogenation. Alternative to Pt and Cr based industrial catalysts (review)
https://doi.org/10.18412/1816-0387-2025-2-18-32
Abstract
Catalytic propane dehydrogenation is the targeted and most efficient industrial method of propylene production. The practical significance of this method is growing given the relative availability of propane as a feedstock. The review considered the prospects of developing new generation propane dehydrogenation catalysts based on transition metal oxides (Zn, Ga, Co and V), which can compete with commercial platinum- and chromium-containing catalysts. The review will announce a series of publications on this topic as part of the scientific research supported by the Russian Science Foundation.
About the Authors
K. Yu. KoltunovRussian Federation
V. V. Kaichev
Russian Federation
V. I. Sobolev
Russian Federation
References
1. Zimmermann H. Propene. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co., KGaA: Weinheim, Germany, 2013. https://doi.org/10.1002/14356007.a22_211.pub3
2. Sattler J.J.H.B., Ruiz-Martinez J., Santillan-Jimenez E., Weckhuysen B.M. // Chem. Rev. 2014. V. 114. P. 10613–10653. https://doi.org/10.1021/cr5002436.
3. Hu Z.-P., Yang D., Wang Z., Yuan Z.-Y. // Chin. J. Catal. 2019. V. 40. P. 1233–1254. https://doi.org/10.1016/S1872-2067(19)63360-7
4. Martino M., Meloni E., Festa G., Palma V. // Catalysts 2021. V. 11. 1070. https://doi.org/10.3390/catal11091070
5. Dong S., Altvater N.R., Mark L.O., Hermans I. // Appl. Catal. A 2021. V. 617. P. 118121. https://doi.org/10.1016/j.apcata.2021.118121
6. Chen S., Chang X., Sun G., Zhang T., Xu Y., Wang Y., Pei C., Gong J. // Chem. Soc. Rev. 2021. V. 50. P. 3315–3354. https://doi.org/10.1039/D0CS00814A
7. Otroshchenko T., Jiang G., Kondratenko V.A., Rodemerck U., Kondratenko E.V. // Chem. Soc. Rev. 2021. V. 50. P. 473–527. https://doi.org/10.1039/D0CS01140A
8. Dai Y., Gao X., Wang Q., Wan X., Zhou C., Yang Y. // Chem. Soc. Rev. 2021. V. 50. P. 5590–5630. https://doi.org/10.1039/D0CS01260B
9. Wang Y., Hu P., Yang J., Zhu Y.-A., Chen D. // Chem. Soc. Rev. 2021. V. 50. P. 4299–4358. https://doi.org/10.1039/D0CS01262A
10. Liu S., Zhang B., Liu G. // React. Chem. Eng. 2021. V. 6. P. 9–26. https://doi.org/10.1039/D0RE00381F
11. Ma Z.H., Wang J., Li S., Jiang A.J., Li J., An C.H., Sun L.Y. // IOP Conf. Ser.: Mater. Sci. Eng. 2019. V. 479. 012069. https://iopscience.iop.org/article/10.1088/1757-899X/479/1/012069
12. Phung T.K., Pham T.L.M., Vu K.B., Busca G. // J. Environ. Chem. Eng. 2021. V. 9. P. 105673. https://doi.org/10.1016/j.jece.2021.105673
13. Camacho-Bunquin J., Aich P., Ferrandon M., ‘‘Bean” Getsoian A., Das U., Dogan F., Curtiss L.A., Miller J.T., Marshall C.L., Hock A.S., Stair P.C. // J. Catal. 2017. V. 345. P. 170–182. https://doi.org/10.1016/j.jcat.2016.10.017
14. Liu G., Zeng L., Zhao Z.-J., Tian H., Wu T., Gong J. // ACS Catal. 2016. V. 6. P. 2158–2162. https://doi.org/10.1021/acscatal.5b02878
15. Schweitzer N.M., Hu B., Das U., Kim H., Greeley J., Curtiss L.A., Stair P.C., Miller J.T., Hock A.S. // ACS Catal. 2014. V. 4. P. 1091–1098. https://doi.org/10.1021/cs401116p
16. Sattler J.J., Gonzalez-Jimenez I.D., Luo L., Stears B.A., Malek A., Barton D.G., Kilos B.A., Kaminsky M.P., Verhoeven T.W.,
17. Koers E.J., Baldus M., Weckhuysen B.M. // Angew. Chem. Int. Ed. 2014. V. 53. P. 9251–9256. https://doi.org/10.1002/anie.201404460
18. Searles K., Siddiqi G., Safonova O.V., Coperet C. // Chem. Sci. 2017. V. 8. P. 2661–2666. https://doi.org/10.1039/C6SC05178B
19. Rodemerck U., Stoyanova M., Kondratenko E.V., Linke D. // J. Catal. 2017. V. 352. P. 256–263. https://doi.org/10.1016/j.jcat.2017.05.022
20. Sokolov S., Stoyanova M., Rodemerck U., Linke D., Kondratenko E.V. // J. Catal. 2012. V. 293. P. 67–75. https://doi.org/10.1016/j.jcat.2012.06.005
21. Liu G., Zhao Z.-J., Wu T., Zeng L., Gong J. // ACS Catal. 2016. V. 6. P. 5207–5214. https://doi.org/10.1021/acscatal.6b00893
22. Hu B., ‘‘Bean” Getsoian A., Schweitzer N.M., Das U., Kim H., Niklas J., Poluektov O., Curtiss L.A., Stair P.C., Miller J.T., Hock A.S. // J. Catal. 2015. V. 322. P. 24–37. https://doi.org/10.1016/j.jcat.2014.10.018
23. Hu B., Schweitzer N.M., Zhang G., Kraft S.J., Childers D.J., Lanci M.P., Miller J.T., Hock A.S. // ACS Catal. 2015. V. 5. P. 3494–3503. https://doi.org/10.1021/acscatal.5b00248
24. Zhang Y., Zhao Y., Otroshchenko T., Han S., Lund H., Rodemerck U., Linke D., Jiao H., Jiang G., Kondratenko E.V. // J. Catal. 2019. V. 371. P. 313–324. https://doi.org/10.1016/j.jcat.2019.02.012
25. Wang Y., Hu Z.-P., Lv X., Chen L., Yuan Z.-Y. // J. Catal. 2020. V. 385. P. 61–69. https://doi.org/10.1016/j.jcat.2020.02.019
26. Zhang B., Li G., Zhai Z., Chen D., Tian Y., Yang R., Wang L., Zhang X., Liu G. // AIChE J. 2021. V. 67. e17295. https://doi.org/10.1002/aic.17295
27. Chen S., Zhao Z.-J., Mu R., Chang X., Luo J., Purdy S.C., Kropf A.J., Sun G., Pei C., Miller J.T., Zhou X., Vovk E., Yang Y., Gong J. // Chem 2021. V. 7. P. 1–19. https://doi.org/10.1016/j.chempr.2020.10.008
28. Sun Q., Wang N., Fan Q., Zeng L., Mayoral A., Miao S., Yang R., Jiang Z., Zhou W., Zhang J., Zhang T., Xu J., Zhang P., Cheng J., Yang D.-C., Jia R., Li L., Zhang Q., Wang Y., Terasaki O., Yu J. // Angew. Chem. Int. Ed. 2020. V. 59. P. 19450–19459. https://doi.org/10.1002/anie.202003349
29. Gong T., Qin L., Lu J., Feng H. // Phys. Chem. Chem. Phys. 2016. V. 18. P. 601–614. https://doi.org/10.1039/C5CP05043J
30. Yuan Y., Lobo R.F. // ACS Catal. 2023. V. 13. P. 4971−4984. https://doi.org/10.1021/acscatal.2c05898
31. Liu X., Lv X., Song W., Zhang G., Guo X. // Ind. Eng. Chem. Res. 2024. V. 63. P. 121−129. https://doi.org/10.1021/acs.iecr.3c03168
32. Chen C., Hu Z., Ren J., Zhang S., Wang Z., Yuan Z.Y. // ChemCatChem 2019. V. 11. P. 868–877. https://doi.org/10.1002/cctc.201801708
33. Serykh A.I., Agafonov Y.A. // Mol. Catal. 2020. V. 493. P. 111055. https://doi.org/10.1016/j.mcat.2020.111055
34. Ma F., Chang Q.-Y., Yin Q., Sui Z.-J., Zhou X.-G., Chen D., Zhu Y.-A. // Catal. Sci. Technol. 2020. V. 10. P. 4938–4951. https://doi.org/10.1039/D0CY00609B
35. Zhao D., Guo K., Han S., Doronkin D.E., Lund H., Li J., Grunwaldt J.-D., Zhao Z., Xu C., Jiang G., Kondratenko E.V. // ACS Catalysis 2022. V. 12. P. 4608–4617. https://doi.org/10.1021/acscatal.1c05778
36. Zhao D., Gao M., Tian X., Doronkin D.E., Han S., Grunwaldt J.-D., Rodemerck U., Linke D., Ye M., Jiang G., Jiao H., Kondratenko E.V. // ACS Catalysis 2023. V. 13. P. 3356–3369. https://doi.org/10.1021/acscatal.2c05704
37. Xie Z., Xie X., Shi Q., M. Zhang, Li D., Zhang K., Song Y., Kong L., Fan X., Xiao X., Zhao Z. // ACS Appl. Nano Mater. 2023. V. 6. P. 20652–20659. https://doi.org/10.1021/acsanm.3c03243
38. Chai Y., Chen S., Chen Y., Wei F., Cao L., Lin J., Li L., Liu X., Lin S., Wang X., Zhang T. // J. Am. Chem. Soc. 2024. V. 146. P. 263–273. https://doi.org/10.1021/jacs.3c08616
39. Han S., Zhao D., Otroshchenko T., Lund H., Bentrup U., Kondratenko V. A., Rockstroh N., Bartling S., Doronkin D.E., Grunwaldt J.-D., Rodemerck U., Linke D., Gao M., Jiang G., Kondratenko E.V. // ACS Catal. 2020. V. 10. P. 8933– 8949. https://doi.org/10.1021/acscatal.0c01580
40. Zhang Y., Qi L., Nozik D., Dun C., Urban J.J., Bell A.T. // ACS Catalysis 2024. V. 14. P. 2787–2804. https://doi.org/10.1021/acscatal.3c05605
41. Han S., Zhao D., Kondratenko E.V. // Acc. Chem. Res. 2024. V. 57. P. 1264–1274. https://doi.org/10.1021/acs.accounts.4c00011
42. Li Y., Fu S., Zhang Q., Liu H., Wang Y. // Catalysts 2022. V. 12. P. 1371. https://doi.org/10.3390/catal12111371
43. Shao C.T., Lang W.Z., Yan X., Guo Y.J. // RSC Adv. 2017. V. 7. P. 4710–4723. https://doi.org/10.1039/C6RA27204E
44. Schreiber M.W., Plaisance C.P., Baumgärtl M., Reuter K., Jentys A., Bermejo-Deval R., Lercher J.A. // J. Am. Chem. Soc. 2018. V. 140. P. 4849–4859. https://doi.org/10.1021/jacs.7b12901
45. Mansoor E., Head-Gordon M., Bell A.T. // ACS Catal. 2018. V. 8. P. 6146–6162. https://doi.org/10.1021/acscatal.7b04295
46. Tan S., Kim S.J., Moore J.S., Liu Y., Dixit R.S., Pendergast J.G., Sholl D.S., Nair S., Jones C.W. // ChemCatChem 2016. V. 8. P. 214–221. https://doi.org/10.1002/cctc.201500916
47. Kwon H.C., Park Y., Park J.Y., Ryoo R., Shin H., Choi M. // ACS Catal. 2021. V. 11. P. 10767–10777. https://doi.org/10.1021/acscatal.1c02553
48. Praveen C.S., Borosy A.P., Copéret C., Comas-Vives A. // Inorg. Chem. 2021. V. 60. P. 6865−6874. https://dx.doi.org/10.1021/acs.inorgchem.0c03135
49. Chang Q.-Y., Wang K.-Q., Hu P., Sui Z.-J., Zhou X.-G., Chen D., Yuan W.-K., Zhu Y.-A. // AIChE J. 2020. V. 66. e16232. https://doi.org/10.1002/aic.16232
50. Abdelgaid M., Dean J., Mpourmpakis G. // Catal. Sci. Technol. 2020. V. 10. P. 7194–7202. https://doi.org/10.1039/D0CY01474E
51. Jiang P., Fu H., Ma H., Qian W., Zhang H., Ying W. // Catal. Lett. 2021. V. 151. P. 1894–1901. https://doi.org/10.1007/s10562-020-03452-0
52. Yuan Y., Lee J.S., Lobo R.F. // J. Am. Chem. Soc. 2022. V. 144. P. 15079−15092. https://doi.org/10.1021/jacs.2c03941
53. Zhang S., Zhang B., Song M., Xia L., Liu G. // Ind. Eng. Chem. Res. 2024. V. 63. P. 9299−9303. https://doi.org/10.1021/acs.iecr.4c00411
54. Carter J.H., Bere T., Pitchers J.R., Hewes D.G., Vandegehuchte B.D., Kiely C.J., Taylor S.H., Hutchings G.J. // Green Chem. 2021. V. 23. P. 9747−9799. https://doi.org/10.1039/D1GC03700E
55. Sun Y., Wu Y., Shan H., Li C. // Catal. Lett. 2015. V. 145. P. 1413–1419. https://doi.org/10.1007/s10562-015-1533-4
56. Hu B., Getsoian A., Schweitzer N.M., Das U., Kim H., Niklas J., Poluektov O., Curtiss L.A., Stair P.C., Miller J.T., Hock A.S. // J. Catal. 2015. V. 322. P. 24–37. http://dx.doi.org/10.1016/j.jcat.2014.10.018
57. Estes D.P., Siddiqi G., Allouche F., Kovtunov K.V., Safonova O.V., Trigub A.L., Koptyug I.V., Coperet C. // J. Am. Chem. Soc. 2016. V. 138. P. 14987–14997. https://doi.org/10.1021/jacs.6b08705
58. Hu B., Kim W.-G., Sulmonetti T.P., Sarazen M.L., Tan S., So J., Liu Y., Dixit R.S., Nair S., Jones C.W. // ChemCatChem 2017. V. 9. P. 3330–3337. https://doi.org/10.1002/cctc.201700647
59. Song S.J., Li J.. Wu Z.J., Zhang P., Sun Y.Q., Song W.Y., Li Z.X., Liu J. // AIChE J. 2022. V. 68. e17451. https://doi.org/10.1002/aic.17451
60. Dewangan N., Ashok J., Sethia M., Das S., Pati S., Kus H., Kawi S. // ChemCatChem 2019. V. 11. P. 4923–4934. https://doi.org/10.1002/cctc.201900924
61. Dai Y., Gu J., Tian S., Wu Y., Chen J., Li F., Du Y., Peng L., Ding W., Yang Y. // J. Catal. 2020. V. 381. P. 482–492. https://doi.org/10.1016/j.jcat.2019.11.026
62. Bian Z.F., Dewangan N., Wang Z.G., Pati S., Xi S.B., Borgna A., Kus H., Kawi S. // ACS Appl. Nano Mater. 2021. V. 4. P. 1112–1125. https://doi.org/10.1021/acsanm.0c02721
63. Wu L.Z., Ren Z.Z., He Y.S., Yang M., Yu Y.K., Liu Y.M., Tan L., Tang Y. // ACS Appl. Mater. Interfaces 2021. V. 13. P. 48934–48948. https://doi.org/10.1021/acsami.1c15892
64. Ren Z., He Y., Yang M., Deng H., Zhang Y., Yang H., Tang Z., Tan L., Tang Y., Wu L. // Mol. Catal. 2022. V. 530. P. 112580. https://doi.org/10.1016/j.mcat.2022.112580
65. Ge M., Chen X., Li Y., Wang J., Xu Y., Zhang L. // React. Kinet. Mech. Catal. 2020. V. 130. P. 241–256. https://doi.org/10.1007/s11144-020-01779-8
66. Jeon N., Oh J., Tayal A., Jeong B., Seo O., Kim S., Chung I., Yun Y.J. // J. Catal. 2021. V. 404. P. 1007–1016. https://doi.org/10.1016/j.jcat.2021.10.035
67. Gao Y., Peng L., Long J., Wu Y., Dai Y., Yang Y. // Micropor. Mesopor. Mater. 2021. V. 323. P. 111187. https://doi.org/10.1016/j.micromeso.2021.111187
68. Hu. Z.-P., Qin G., Han J., Zhang W., Wang N., Zheng Y., Jiang Q., Ji T.,Yuan Z.-Y., Xiao J., Wei Y., Liu Z. // J. Am. Chem. Soc. 2022. V. 144. P. 12127−12137. https://doi.org/10.1021/jacs.2c02636
69. Chen C., Zhang S.M., Wang Z., Yuan Z.Y. // J. Catal. 2020. V. 383. P. 77–87. https://doi.org/10.1016/j.jcat.2019.12.037
70. Li X.Y., Wang P.Z., Wang H.R., Li C.Y. // Appl. Surf. Sci. 2018. V. 441. P. 688–693. https://doi.org/10.1016/j.apsusc.2018.02.024
71. Wu Y., Long J., Wei S., Gao Y., Yang D., Dai Y., Yang Y. // Micropor. Mesopor. Mater. 2022. V. 341. P. 112115. https://doi.org/10.1016/j.micromeso.2022.112115
72. Li Y., Zhang Q., Fu S., Kondratenko V.A., Otroshchenko T., Bartling S., Zhang Y., Zanina A., Wang Y., Cui G., Zhou M., Zhao Z., Xu C., Jiang G., Kondratenko E.V. // Chem. Eng. J. 2023. V. 460. P. 14177. https://doi.org/10.1016/j.cej.2023.141778
73. Jacobson D., Freiser B. // J. Am. Chem. Soc. 1983. V. 105. P. 5197–5206. https://doi.org/10.1021/ja00354a003
74. Van Koppen P.A., Bowers M.T., Haynes C.L., Armentrout P.B. // J. Am. Chem. Soc. 1998. V. 120. P. 5704–5712. https://doi.org/10.1021/ja974372s
75. Xie J., Kammert J.D., Kaylor N., Zheng J.W., Choi E., Pham H.N., Sang X., Stavitski E., Attenkofer K., Unocic R.R., Datye A.K., Davis R.J. // ACS Catal. 2018. V. 8. P. 3875–3884. https://doi.org/10.1021/acscatal.8b00141
76. Cao T., Dai X., Li F., Liu W., Bai Y., Fu Y., Qi W. // ChemCatChem 2021. V. 13. P. 3067–3073. https://doi.org/10.1002/cctc.202100410
77. Wang Y., Suo Y., Ren J.-T., Wang Z., Yuan Z.-Y. // J. Colloid Interface Sci. 2021. V. 594. P. 113–121. https://doi.org/10.1016/j.jcis.2021.03.023
78. Li Y.-M., Liu Z.-Y., Zhang Q.-Y., Wang Y.-J., Cui G.-Q., Zhao Z., Xu C.-M., Jiang G.-Y. // Pet. Sci. 2023. V. 20. P. 559–568. https://doi.org/10.1016/j.petsci.2022.01.008
79. Chernov A.N., Sobolev V.I., Koltunov K.Yu. // Catal. Commun. 2022. V. 170. P. 106495. https://doi.org/10.1016/j.catcom.2022.106495
80. Chernov A.N., Sobolev V.I., Gerasimov E.Y., Koltunov K.Y. // Catalysts 2022. V. 12. P. 1262. https://doi.org/10.3390/catal12101262
81. Chernov A.N., Cherepanova S.V., Gerasimov E.Y., Prosvirin I.P., Zenkovets G.A., Shutilov A.A., Gorbunova A.S., Koltunov K.Y., Sobolev V.I. // Catalysts 2023. V. 13. P. 1419. https://doi.org/10.3390/catal13111419
82. Shi Q., Song Y., Li D., Wang Y., Xie Z., Fan X., Kong L., Xiao X., Zhao Z. // J. Catal. 2024. V. 433 P. 115472. https://doi.org/10.1016/j.jcat.2024.115472
83. Wang W., Wu Y., Liu T., Zhao Y., Qu Y., Yang R., Xue Z., Wang Z., Zhou F., Long J., Yang Z., Han X., Lin Y., Chen M., Zheng L., Zhou H., Lin X., Wu F., Wang H., Yang Y., Li Y., Dai Y., Wu Y. // ACS Catal. 2022. V. 12. P. 2632–2638. https://doi.org/10.1021/acscatal.1c05921
84. Zhang C.-W., Wen J., Wang L., Wang X.-G., Shi L. // New J. Chem. 2020. V. 44. P. 7450-7459. https://doi.org/10.1039/D0NJ00381F
85. Jeon N., Seo O., Oh J., Park J., Chung I., Kim J., Sakata O., Tayal A., Yun Y. // Appl. Catal. A 2021. V. 614. P. 118036. https://doi.org/10.1016/j.apcata.2021.118036
86. Zhao Z.-J., Wu T., Xiong C., Sun G., Mu R., Zeng L., Gong J. // Angew. Chem. Int. Ed. 2018. V. 57. P. 6791–6795. https://doi.org/10.1002/anie.201800123
87. Kaichev V.V., Chesalov Y.A., Saraev A.A., Tsapina A.M. // J. Phys. Chem. C 2019. V. 123. P. 19668−19680. https://doi.org/10.1021/acs.jpcc.9b04991
88. Ovsitser O., Schomaecker R., Kondratenko E.V., Wolfram T., Trunschke A. // Catal. Today 2012. V. 192. P. 16–19. https://doi.org/10.1016/j.cattod.2012.01.034
89. Sokolov S., Stoyanova M., Rodemerck U., Linke D., Kondratenko E.V. // Catal. Sci. Technol. 2014. V. 4. P. 1323–1332. https://doi.org/10.1039/C3CY01083J
90. Wu T., Liu G., Zeng L., Sun G., Chen S., Mu R., Gbonfoun S.A., Zhao Z.J., Gong J. // AIChE J. 2017. V. 63. P. 4911–4919. https://doi.org/10.1002/aic.15836
91. Gu Y., Liu H., Yang M., Ma Z., Zhao L., Xing W., Wu P., Liu X., Mintova S., Bai P., Yan Z. // Appl. Catal. B 2020. V. 274. P. 119089. https://doi.org/10.1016/j.apcatb.2020.119089
92. Chen C., Sun M., Hu Z., Liu Y., Zhang S., Yuan Z.-Y. // Chin. J. Catal. 2020. V. 41. P. 276–285. https://doi.org/10.1016/S1872-2067(19)63444-3
93. Xie Y., Luo R., Sun G., Chen S., Zhao Z.-J., Mu R., Gong J. // Chem. Sci. 2020. V. 11. 3845–3851. https://doi.org/10.1039/D0SC00690D
94. Wang G., Xu H., Lu K., Ding Z., Bing L. // Turk. J. Chem. 2020. V. 44. P. 112–124. https://doi.org/10.3906/kim-1907-53
95. Chen W., You K., Wei Y., Zhao F., Chen Z., Wu J., Ai Q., Luo H. // Ind. Eng. Chem. Res. 2021. V. 60. P. 18327–18336. https://doi.org/10.1021/acs.iecr.1c03935
96. Y. Li, Yu X., Zhang Q., Kondratenko V.A., Wang Y., Cui G., Zhou M., Xu C., Kondratenko E.V., Jiang G. // J. Catal. 2022. V. 413. P. 658–667. https://doi.org/10.1016/j.jcat.2022.07.017
97. Sun Z., Zhu Z., Zhang H., Chu C., Han D., Zhang J., Wang F., Bing L., Wang G. // Ind. Eng. Chem. Res. 2024. V. 63. P. 7614–7623. https://doi.org/10.1021/acs.iecr.4c00356
98. Bai P., Ma Z., Li T., Tian Y., Zhang Z., Zhong Z., Xing W., Wu P., Liu X., Yan Z. // ACS Appl. Mater. Interfaces 2016. V. 8. P. 25979–25990. https://doi.org/10.1021/acsami.6b07779
Review
For citations:
Koltunov K.Yu., Kaichev V.V., Sobolev V.I. Progress in the development of oxide catalysts for non-oxidative propane dehydrogenation. Alternative to Pt and Cr based industrial catalysts (review). Kataliz v promyshlennosti. 2025;25(2):18-32. (In Russ.) https://doi.org/10.18412/1816-0387-2025-2-18-32