Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Application of hydrodynamic cavitation to intensify the reaction of solketal synthesis from glycerol and acetone

https://doi.org/10.18412/1816-0387-2025-3-51-61

Abstract

The possibility of using hydrodynamic cavitation to intensify the synthesis of solketal from glycerol and acetone in the presence of zeolite has been demonstrated for the first time. The reaction was studied in the presence of faujasite zeolite (FAU, SiO2 /Al2O3 = 14.9). It was found that the use of hydrodynamic cavitation promotes an increase in glycerol conversion from 35.2 to 66.8% in 30 min of reaction without changing the selectivity for solketal at an acetone/glycerol molar ratio of 2.5, a catalyst load of 1.6 wt.% (based on the weight of loaded glycerol) and 25 °C. The results indicate that the cavitation mode can be considered as a promising method for intensifying reactions for obtaining glycerol ketals and acetals.

About the Authors

O. N. Kovalenko
Institute of Catalysis SB RAS, Novosibirsk
Russian Federation


I. I. Simentsova
Institute of Catalysis SB RAS, Novosibirsk
Russian Federation


V. N. Panchenko
Institute of Catalysis SB RAS, Novosibirsk
Russian Federation


M. N. Timofeeva
Institute of Catalysis SB RAS, Novosibirsk
Russian Federation


References

1. Rodrigues A., Carlos Bordado J., dos Santos R. G. // Energies. 2017. V. 10. No.11. P. 1817. https://doi.org/10.3390/en10111817

2. Correa I., Faria R. P. V., Rodrigues A. E. // Sustain. Chem. 2021. V. 2. P. 286-324. https://doi.org/10.3390/suschem2020017

3. Mota C.J.A., Silva C.X.A., Rosenbach N.J., Costa J., Silva F. // Energy Fuels. 2010. V. 24. P. 2733-2736. http://dx.doi.org/ 10.1021/EF9015735

4. Manjunathan P., Maradur S.P., Halgeri A.B., Shanbhag G.V. // J. Mol. Catal. A Chem. 2015. V. 396. P. 47-54. https://doi.org/10.1016/j.molcata.2014.09.028

5. Rossa V., Pessanha Y.d.S.P., Diaz G.C., Camara L.D.T., Pergher S.B.C., Aranda D.A.G. // Ind. Eng. Chem. Res. 2017. V. 56. P. 479-488. https://doi.org/10.1021/acs.iecr.6b03581

6. Kovalenko O.N., Simentsova I.I., Panchenko V.N., Timofeeva M.N. // Catalysis in Industry. 2023. V. 15. No. 4. P. 410–419. https://doi.org/10.1134/S207005042304013X

7. Ефремова К.Д., Пильгунов В.Н. // Наука и Образование. МГТУ им. Н.Э. Баумана. Электрон. журн. 2016. № 03. С. 12–36. DOI: 10.7463/0316.0835344

8. Скоков В. Н., Решетников А. К., Виноградов A. В., Коверда В. П. // Акустический журнал. 2007. Т. 53. № 2. С. 168 -I72. http://www.akzh.ru/pdf/2007_2_168-172.pdf

9. Mohod A.V., Teixeira A.C.S.C., Bagal M.V., Gogate P.R., Giudici R. // Journal of Environmental Chemical Engineering. 2023. V. 11. No. 3. P.109773. https://doi.org/10.1016/j.jece.2023.109773

10. Mohod A.V., Momotko M., Shah N.S., Marchel M., Imran M., Kong L., Boczkaj G. // Water Resources and Industry. 2023. V. 30. P. 100220. https://doi.org/10.1016/j.wri.2023.100220

11. Darandale G. R., Jadhav M. V., Warade A. R., Hakke V.S. // Materials Today: Proceedings. 2023. V. 77. P. 960-968. https://doi.org/10.1016/j.matpr.2022.12.075

12. Elvana C., Wang Z., Castro-Muñoz R., Rayaroth M.P., Boczkaj G. // Ultrasonics sonochemistry. 2022. V. 88. P. 106081. https://doi.org/10.1016/j.ultsonch.2022.106081

13. Sun X., Liu S., Manickam S., Tao Y., Yoon J.Y., Xuan X. // Renewable and Sustainable Energy Reviews. 2023. V. 179. P. 113277. https://doi.org/10.1016/j.rser.2023.113277

14. Patil A., Baral S., Dhanke P. // Current Research in Green and Sustainable Chemistry. 2021. V. 4. P. 100144. https://doi.org/10.1016/j.crgsc.2021.100144

15. Okolie J.A., Escobar J.I., Umenweke G., Khanday W., Okoye P.U. // Fuel. 2022. V. 307. P. 121821. https://doi.org/10.1016/j.fuel.2021.121821

16. Mazubert A., Poux M., Aubin J. // Chemical Engineering Journal. 2013. V. 233. P. 201-223. https://doi.org/10.1016/j.cej.2013.07.063

17. Deshmane V.G., Gogate P.R., Pandit A.B. // Chemical Engineering Journal. 2008. V. 145. P. 351–354. https://doi.org/10.1016/j.cej.2008.08.012

18. Jadhav H.B., Annapure U. // Chemical Engineering Science. 2022. V. 247. P. 116909. https://doi.org/10.1016/j.ces.2021.116909

19. Kelkar M.A., Gogate P.R., Pandit A.B. // Ultrasonics Sonochemistry. 2008. V. 15. P. 188–194. https://doi.org/10.1016/j.ultsonch.2007.04.003

20. Pandit A.B., Joshi J.B. // Chemical Engineering Science. 1993. V. 48. P. 3440–3442. https://doi.org/10.1016/0009-2509(93)80164-L

21. Jaya H.S., Wardana I.N.G., Hamidi N., Widhiyanuriyawan D. // Ain Shams Engineering Journal. 2021. V. 12. No. 4. P. 3905-3918. https://doi.org/10.1016/j.asej.2021.03.023

22. Yakovlev V.A., Zavarukhin S.G., Kuzavov V.T., Stebnovskii S.V., Malykh N.V., Mal’tsev L.I., Parmon V.N. // Russian Journal of Physical Chemistry B. 2010. V. 4. No. 2. P. 227–234. https://doi.org/10.1134/S1990793110020077

23. Gil A., Korili S.A., Vicente M.A. // Catal. Rev. Sci. Eng. 2008. V. 50. P. 153-221. https://doi.org/10.1080/01614940802019383

24. Kovalenko O. N., Simentsova I. I., Panchenko V. N., Timofeeva M. N. // Catalysis in Industry. 2022. V. 14. P. 208-217. https://doi.org/10.1134/S2070050422020040

25. Qiang Liu, Jeroen A. van Bokhoven // Chem. Soc. Rev. 2024. V. 53. P. 3065-3095. https://doi.org/10.1039/D3CS00404J

26. Jiangyin Lu, Zhen Zhao, Chunming Xu, Aijun Duan, Pu Zhang // Journal of Natural Gas Chemistry. 2005. V. 14. P. 213–220. https://dds.sciengine.com/cfs/files/pdfs/view/1003-9953/734A657FEEC249E28FD286972AE6B967.pdf

27. Bal’zhinimaev, B. S., Paukshtis, E. A., Toktarev, A. V., Kovalyov, E. V., Yaranova, M. A., Smirnov, A. E., Stompel, S. // Microporous and Mesoporous Materials. 2018. V. 277. P. 70-77. https://doi.org/10.1016/j.micromeso.2018.10.023

28. Grifoni E., Piccini G.M., Lercher J.A., Glezakou V.A., Rousseau R., Parrinello M. // Nat Commun. 2021. V. 12. P. 2630. https://doi.org/10.1038/s41467-021-22936-0

29. Eckstein S., Hintermeier P.H., Zhao R., Baráth E., Shi H., Liu Y., Lercher J.A. // Angew. Chem. - Int. Ed. 2019. V. 58. P. 3450–3455. https://doi.org/10.1002/anie.201812184

30. Wang M., Jaegers N.R., Lee M.S., Wan Ch., Hu J. Zh., Shi H., Mei D., Burton S.D., Camaioni D.M., Gutiérrez O.Y., Glezakou V.A., Rousseau R., Wang Y., Lercher J.A. // J. Am. Chem. Soc. 2019. V. 141. P. 3444–3455. https://doi.org/10.1021/jacs.8b07969

31. Król M., Kolezynski A., Mozgawa W. // Molecules. 2021. V. 26. P. 342. https://doi.org/10.3390/molecules26020342

32. Edanol Y. D.G., Usman K. A. S., Buenviaje S. C., Mantua Jr. M. E., Payawan L. M. Jr. // KIMIKA. 2018. V. 29. P. 17-21. https://doi.org/10.26534/KIMIKA.V29I1.17-21

33. Ghasemi Z., Younesi H. // Waste Biomass Valor. 2012. V. 3. P. 61-74. https://doi.org/0.1007/s12649-011-9084-4

34. Zhao J., Yin Y., Li Y., Chen W., Liu B. // Chem. Eng. J. 2016. V. 284. P. 405–411. https://doi.org/10.1016/j.cej.2015.08.143

35. Jarrin T., de Bruin T., Chizallet C. // ChemCatChem 2023. V. 15. № e202201302б https://doi.org/10.1002/cctc.202201302

36. Jaegers N.R., Hu W., Weber T.J., Hu J.Z. // Scientific Reports. 2021. V. 11. N. 7800. https://doi.org/10.1038/s41598-021-87044-x

37. Jeong K., Byun B. J., Kang Y. K. // Bull. Korean Chem. Soc. 2012. V. 33. No. 3. P. 917-924. http://dx.doi.org/10.5012/bkcs.2012.33.3.917


Review

For citations:


Kovalenko O.N., Simentsova I.I., Panchenko V.N., Timofeeva M.N. Application of hydrodynamic cavitation to intensify the reaction of solketal synthesis from glycerol and acetone. Kataliz v promyshlennosti. 2025;25(3):51-61. (In Russ.) https://doi.org/10.18412/1816-0387-2025-3-51-61

Views: 69


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)