

Application of hydrodynamic cavitation to intensify the reaction of solketal synthesis from glycerol and acetone
https://doi.org/10.18412/1816-0387-2025-3-51-61
Abstract
The possibility of using hydrodynamic cavitation to intensify the synthesis of solketal from glycerol and acetone in the presence of zeolite has been demonstrated for the first time. The reaction was studied in the presence of faujasite zeolite (FAU, SiO2 /Al2O3 = 14.9). It was found that the use of hydrodynamic cavitation promotes an increase in glycerol conversion from 35.2 to 66.8% in 30 min of reaction without changing the selectivity for solketal at an acetone/glycerol molar ratio of 2.5, a catalyst load of 1.6 wt.% (based on the weight of loaded glycerol) and 25 °C. The results indicate that the cavitation mode can be considered as a promising method for intensifying reactions for obtaining glycerol ketals and acetals.
About the Authors
O. N. KovalenkoRussian Federation
I. I. Simentsova
Russian Federation
V. N. Panchenko
Russian Federation
M. N. Timofeeva
Russian Federation
References
1. Rodrigues A., Carlos Bordado J., dos Santos R. G. // Energies. 2017. V. 10. No.11. P. 1817. https://doi.org/10.3390/en10111817
2. Correa I., Faria R. P. V., Rodrigues A. E. // Sustain. Chem. 2021. V. 2. P. 286-324. https://doi.org/10.3390/suschem2020017
3. Mota C.J.A., Silva C.X.A., Rosenbach N.J., Costa J., Silva F. // Energy Fuels. 2010. V. 24. P. 2733-2736. http://dx.doi.org/ 10.1021/EF9015735
4. Manjunathan P., Maradur S.P., Halgeri A.B., Shanbhag G.V. // J. Mol. Catal. A Chem. 2015. V. 396. P. 47-54. https://doi.org/10.1016/j.molcata.2014.09.028
5. Rossa V., Pessanha Y.d.S.P., Diaz G.C., Camara L.D.T., Pergher S.B.C., Aranda D.A.G. // Ind. Eng. Chem. Res. 2017. V. 56. P. 479-488. https://doi.org/10.1021/acs.iecr.6b03581
6. Kovalenko O.N., Simentsova I.I., Panchenko V.N., Timofeeva M.N. // Catalysis in Industry. 2023. V. 15. No. 4. P. 410–419. https://doi.org/10.1134/S207005042304013X
7. Ефремова К.Д., Пильгунов В.Н. // Наука и Образование. МГТУ им. Н.Э. Баумана. Электрон. журн. 2016. № 03. С. 12–36. DOI: 10.7463/0316.0835344
8. Скоков В. Н., Решетников А. К., Виноградов A. В., Коверда В. П. // Акустический журнал. 2007. Т. 53. № 2. С. 168 -I72. http://www.akzh.ru/pdf/2007_2_168-172.pdf
9. Mohod A.V., Teixeira A.C.S.C., Bagal M.V., Gogate P.R., Giudici R. // Journal of Environmental Chemical Engineering. 2023. V. 11. No. 3. P.109773. https://doi.org/10.1016/j.jece.2023.109773
10. Mohod A.V., Momotko M., Shah N.S., Marchel M., Imran M., Kong L., Boczkaj G. // Water Resources and Industry. 2023. V. 30. P. 100220. https://doi.org/10.1016/j.wri.2023.100220
11. Darandale G. R., Jadhav M. V., Warade A. R., Hakke V.S. // Materials Today: Proceedings. 2023. V. 77. P. 960-968. https://doi.org/10.1016/j.matpr.2022.12.075
12. Elvana C., Wang Z., Castro-Muñoz R., Rayaroth M.P., Boczkaj G. // Ultrasonics sonochemistry. 2022. V. 88. P. 106081. https://doi.org/10.1016/j.ultsonch.2022.106081
13. Sun X., Liu S., Manickam S., Tao Y., Yoon J.Y., Xuan X. // Renewable and Sustainable Energy Reviews. 2023. V. 179. P. 113277. https://doi.org/10.1016/j.rser.2023.113277
14. Patil A., Baral S., Dhanke P. // Current Research in Green and Sustainable Chemistry. 2021. V. 4. P. 100144. https://doi.org/10.1016/j.crgsc.2021.100144
15. Okolie J.A., Escobar J.I., Umenweke G., Khanday W., Okoye P.U. // Fuel. 2022. V. 307. P. 121821. https://doi.org/10.1016/j.fuel.2021.121821
16. Mazubert A., Poux M., Aubin J. // Chemical Engineering Journal. 2013. V. 233. P. 201-223. https://doi.org/10.1016/j.cej.2013.07.063
17. Deshmane V.G., Gogate P.R., Pandit A.B. // Chemical Engineering Journal. 2008. V. 145. P. 351–354. https://doi.org/10.1016/j.cej.2008.08.012
18. Jadhav H.B., Annapure U. // Chemical Engineering Science. 2022. V. 247. P. 116909. https://doi.org/10.1016/j.ces.2021.116909
19. Kelkar M.A., Gogate P.R., Pandit A.B. // Ultrasonics Sonochemistry. 2008. V. 15. P. 188–194. https://doi.org/10.1016/j.ultsonch.2007.04.003
20. Pandit A.B., Joshi J.B. // Chemical Engineering Science. 1993. V. 48. P. 3440–3442. https://doi.org/10.1016/0009-2509(93)80164-L
21. Jaya H.S., Wardana I.N.G., Hamidi N., Widhiyanuriyawan D. // Ain Shams Engineering Journal. 2021. V. 12. No. 4. P. 3905-3918. https://doi.org/10.1016/j.asej.2021.03.023
22. Yakovlev V.A., Zavarukhin S.G., Kuzavov V.T., Stebnovskii S.V., Malykh N.V., Mal’tsev L.I., Parmon V.N. // Russian Journal of Physical Chemistry B. 2010. V. 4. No. 2. P. 227–234. https://doi.org/10.1134/S1990793110020077
23. Gil A., Korili S.A., Vicente M.A. // Catal. Rev. Sci. Eng. 2008. V. 50. P. 153-221. https://doi.org/10.1080/01614940802019383
24. Kovalenko O. N., Simentsova I. I., Panchenko V. N., Timofeeva M. N. // Catalysis in Industry. 2022. V. 14. P. 208-217. https://doi.org/10.1134/S2070050422020040
25. Qiang Liu, Jeroen A. van Bokhoven // Chem. Soc. Rev. 2024. V. 53. P. 3065-3095. https://doi.org/10.1039/D3CS00404J
26. Jiangyin Lu, Zhen Zhao, Chunming Xu, Aijun Duan, Pu Zhang // Journal of Natural Gas Chemistry. 2005. V. 14. P. 213–220. https://dds.sciengine.com/cfs/files/pdfs/view/1003-9953/734A657FEEC249E28FD286972AE6B967.pdf
27. Bal’zhinimaev, B. S., Paukshtis, E. A., Toktarev, A. V., Kovalyov, E. V., Yaranova, M. A., Smirnov, A. E., Stompel, S. // Microporous and Mesoporous Materials. 2018. V. 277. P. 70-77. https://doi.org/10.1016/j.micromeso.2018.10.023
28. Grifoni E., Piccini G.M., Lercher J.A., Glezakou V.A., Rousseau R., Parrinello M. // Nat Commun. 2021. V. 12. P. 2630. https://doi.org/10.1038/s41467-021-22936-0
29. Eckstein S., Hintermeier P.H., Zhao R., Baráth E., Shi H., Liu Y., Lercher J.A. // Angew. Chem. - Int. Ed. 2019. V. 58. P. 3450–3455. https://doi.org/10.1002/anie.201812184
30. Wang M., Jaegers N.R., Lee M.S., Wan Ch., Hu J. Zh., Shi H., Mei D., Burton S.D., Camaioni D.M., Gutiérrez O.Y., Glezakou V.A., Rousseau R., Wang Y., Lercher J.A. // J. Am. Chem. Soc. 2019. V. 141. P. 3444–3455. https://doi.org/10.1021/jacs.8b07969
31. Król M., Kolezynski A., Mozgawa W. // Molecules. 2021. V. 26. P. 342. https://doi.org/10.3390/molecules26020342
32. Edanol Y. D.G., Usman K. A. S., Buenviaje S. C., Mantua Jr. M. E., Payawan L. M. Jr. // KIMIKA. 2018. V. 29. P. 17-21. https://doi.org/10.26534/KIMIKA.V29I1.17-21
33. Ghasemi Z., Younesi H. // Waste Biomass Valor. 2012. V. 3. P. 61-74. https://doi.org/0.1007/s12649-011-9084-4
34. Zhao J., Yin Y., Li Y., Chen W., Liu B. // Chem. Eng. J. 2016. V. 284. P. 405–411. https://doi.org/10.1016/j.cej.2015.08.143
35. Jarrin T., de Bruin T., Chizallet C. // ChemCatChem 2023. V. 15. № e202201302б https://doi.org/10.1002/cctc.202201302
36. Jaegers N.R., Hu W., Weber T.J., Hu J.Z. // Scientific Reports. 2021. V. 11. N. 7800. https://doi.org/10.1038/s41598-021-87044-x
37. Jeong K., Byun B. J., Kang Y. K. // Bull. Korean Chem. Soc. 2012. V. 33. No. 3. P. 917-924. http://dx.doi.org/10.5012/bkcs.2012.33.3.917
Review
For citations:
Kovalenko O.N., Simentsova I.I., Panchenko V.N., Timofeeva M.N. Application of hydrodynamic cavitation to intensify the reaction of solketal synthesis from glycerol and acetone. Kataliz v promyshlennosti. 2025;25(3):51-61. (In Russ.) https://doi.org/10.18412/1816-0387-2025-3-51-61