

Hydrogen production for low-temperature fuel cells by reforming synthetic diesel fuel
https://doi.org/10.18412/1816-0387-2025-5-39-45
Abstract
The article presents the results of experimental and theoretical studies of steam reforming of synthetic diesel fraction (SDF) on the industrial methanation catalyst of the NIAP-07-01 brand in order to produce hydrogen for fuel cells. SDF (boiling point 180-290 °C), obtained by Fischer-Tropsch synthesis on the zeolite-containing catalyst Со/SiO2/ZSM-5/Al2O3, consists of hydrocarbons C11-C18 (88%) and a small amount of the C5-C10 fraction (10.8%). It was found that at a ratio of H2O/C = 3.03 in the temperature range of 450-650 °C in the equilibrium state, the degree of SDF conversion is 100 %, on a nickel catalyst, complete SDF conversion is achieved at a temperature above 600 °C. The main conversion products are hydrogen, methane and carbon dioxide, with the hydrogen concentration being significantly higher and methane concentration being lower than the calculated equilibrium values. The NIAP-07-01 catalyst exhibits high activity and selectivity for hydrogen. The maximum hydrogen yield is 279 g H2/(kg SDF) at 650 °C, the H2 concentration in the converted gas is 66.5%. Calculations have shown that to provide a 10 kW power plant based on a low-temperature fuel cell with a proton exchange membrane based on a Pt/C catalyst with hydrogen, the SDF consumption will be 2.8 kg/h.
About the Authors
R. E. YakovenkoRussian Federation
V. B. Il`in
Russian Federation
I. N. Zubkov
Russian Federation
A. V. Dul'nev
Russian Federation
N. A. Faddeev
Russian Federation
A. B. Kuriganova
Russian Federation
N. V. Smirnova
Russian Federation
References
1. Holladay J.D., Wang Y. A review of recent advances in numerical simulations of microscale fuel processor for hydrogen production // Journal of Power Sources. 2015. V. 282. Р. 602-621. DOI: 10.1016/j.jpowsour.2015.01.079
2. Moraes T.S., da Silva H.N.C., Zotes L.P., Mattos L.V., Borges L.E.P., Farrauto R., Noronha F.B. A techno-economic evaluation of the hydrogen production for energy generation using an ethanol fuel processor // International Journal of Hydrogen Energy. 2019. V. 44. № 39. Р. 21205-21219. DOI: 10.1016/j.ijhydene.2019.06.182
3. Sayar A., Eskin N. Experimental and theoretical analysis of a natural gas fuel processor // International Journal of Hydrogen Energy. 2021. V. 46. № 2. Р. 1569-1582. DOI: 10.1016/j.ijhydene.2020.10.036
4. Kirillov V.A., Shigarov A.B., Amosov Y.I., Belyaev V.D., Gerasimov E.Y. Production of pure hydrogen from diesel fuel by steam pre-reforming and subsequent conversion in a membrane reactor // Petroleum Chemistry. 2018. V. 58. Р. 103-113. DOI: 10.1134/S0965544118020020
5. Кириллов В.А., Шигаров А.Б., Амосов Ю.И., Беляев В.Д., Урусов А.Р. Предриформинг дизельного топлива в метановодородные смеси // Теоретические основы химической технологии. 2015. V. 49. № 1. Р. 32-32.
6. Яковенко Р.Е., Ильин В.Б., Савостьянов А.П., Зубков И.Н., Дульнев А.В., Семенов О.А. Конверсия сжиженных углеводородных газов на промышленных никелевых катализаторах // Катализ в промышленности. V. 19, № 6, 2019, С. 455-464.
7. Нарочный Г.Б., Зубков И.Н., Савостьянов А.П., Аллагузин И.Х., Лавренов С.А., Яковенко Р.Е. Бифункциональный кобальтовый катализатор для синтеза низкозастывающего дизельного топлива методом Фишера–Тропша – от разработки к внедрению. Часть 3. Опыт промышленной реализации технологии приготовления // Катализ в промышленности. 2024. V. 24. № 1. C. 34-43. DOI: 10.18412/1816-0387-2024-1-34-43
Review
For citations:
Yakovenko R.E., Il`in V.B., Zubkov I.N., Dul'nev A.V., Faddeev N.A., Kuriganova A.B., Smirnova N.V. Hydrogen production for low-temperature fuel cells by reforming synthetic diesel fuel. Kataliz v promyshlennosti. 2025;25(5):39-45. (In Russ.) https://doi.org/10.18412/1816-0387-2025-5-39-45