Kinetics of oxidation of carbon monoxide on industrial copper-containing catalyst for fluidized bed
Abstract
Catalysts based on transition metal oxides are the most promising
for the efficient combustion of fuel in a fluidized bed. Afterburning
coke is a limiting stage of fuel combustion, characterized by the
release of carbon monoxide (CO) and its reacting with oxygen on the catalyst surface. Determination of the observed kinetic parameters of this process will further evaluate the efficiency of the catalyst, and optimize the performance of fluidized bed reactor. The study of the kinetics of CO oxidation on the industrial catalyst SCHKZ-1 (oxide aluminum-copper-chromium), currently used in the fluidized bed reactor when burning fuels. The studies carried out in conditions when the internal diffusion does not affect on the reaction rate. Kinetic parameters of the reaction were evaluated by a first order equation for CO and O2; the obtained values of activation energy and pre-exponential rate constants were respectively ko = 5,23·107 s–1, E = 32,8 kJ/mol. A comparison with published data showed their good correlation .
About the Authors
O. V. ChubRussian Federation
V. V. Mokrinsky
Russian Federation
R. I. Reshetnikov
Russian Federation
N. A. Yazikov
Russian Federation
Yu. V. Dubinin
Russian Federation
A. D. Simonov
Russian Federation
V. A. Yakovlev
Russian Federation
References
1. Leckner Bo // Progress in Energy and Combustion Science. 1998. Vol. 24, P. 31—68.
2. Боресков Г.К. Катализ. Вопросы теории и практики. Избранные труды, Новосибирск: Наука, 1987. С. 452.
3. Simonov A.D, Yazykov N.A. et al. // Catalysis Today. 2000. Vol. 60. P. 139—145.
4. Werthner J., Ogada T. // Progress in Energy and Combustion Science. 1999. Vol. 25. P. 55—116.
5. Tarelho L.A.C., Neves D.S.F., Matos M.A.A. // Biomass and bioenergy. 2011. Vol. 35. P. 1511—1523.
6. Werther J., Saenger M. et al. // Progress in Energy and Combustion Science. 2000. Vol. 26. P. 1—27.
7. Симонов А.Д, Федоров И.А., Дубинин Ю.В., Языков Н.А., Яковлев В.А., Пармон В.Н. // Катализ в промышленности. 2012. № 3. C. 50—57.
8. Khan A.A., Jong W. et al. // Fuel processing technology. 2009. Vol. 90. P. 21—50.
9. Van de Velden M., Baeyens J. et al. // China Particuology. 2007. Vol. 5. P. 247—254.
10. Doggiali P., Kusaba H. et al. // Journal of Hazardous Materials. 2011. Vol. 186. P. 796—804.
11. Paldey S., Gedevanishvili S. et al. // Applied Catalysis B: Environmental. 2005. Vol. 56. P. 241—250.
12. Tomul F., Balci S. // Applied Clay Science. 2009. Vol. 43. P. 13—20.
13. Tyurkin Yu., Luzhkova E.N. et al. // Catalysis Today. 1997. Vol. 33. P. 191—197.
14. Xavier K.O., Abdul Rashid K.K., Sen B. // Studies in Surface Science and Catalysis. 1998. Vol. 113. P. 821—828.
15. Xanthopoulou G., Vekinis G. // Applied Catalysis B: Environmental. 1998. Vol. 19. P. 37—44.
16. Chien Chin-Cheng, Chuang Wen-Po, Huang Ta-Jen // Applied Catalysis A: General. 1995. Vol. 131. P. 73—87.
17. Dekker F. H. M., Klopper G. et al. // Chemical Engineering Science. 1994. Vol. 49. № 24A. P. 4375—4390.
18. Реакции углерода с газами. Под. ред Е.С. Головиной. М.: Издательство иностранной литературы, 1963.
19. Померанцев В.В., Арефьев К.М., Ахмедов Д.Б., Коновач М.Н, Корчунов Ю.Н., Рундыгин Ю.А., Шагалов С.Л., Шестаков С.М. Основы практической теории горения. Л.: Энергоатомиздат, 1986.
20. Duprat F. // Chemical Engineering Science. 2002. Vol. 57. P. 901—911.
21. Avgouropoulos G., Ioannides T. // Chem. Eng. Journal. 2011. Vol. 176—177. P. 14—21.
22. Боресков Г.К. Гетерогенный катализ. М.: Наука, 1986. С. 142.
Review
For citations:
Chub O.V., Mokrinsky V.V., Reshetnikov R.I., Yazikov N.A., Dubinin Yu.V., Simonov A.D., Yakovlev V.A. Kinetics of oxidation of carbon monoxide on industrial copper-containing catalyst for fluidized bed. Kataliz v promyshlennosti. 2013;(5):54-58. (In Russ.)