

Catalytic method for production of olefins based on natural halloysite nanotubes
Abstract
The process of C2–C4 olefin production by catalytic high-destruction
cracking and thermocontact pyrolysis of vacuum gasoil, technical cottonseed oil and a mixture of vacuum gasoil and cottonseed oil (90:10) at 600–800 °C was studied using natural halloysite, which consists of nanosize circinate aluminosilicate plates, extracted from kaolinite deposits. In the process of high-destruction catalytic cracking of pure vacuum gasoil at 600 °C, the ethylene yield was 6,4–10,1 wt.% higher over halloysite catalyst than over ZSM-5. The addition of technical cottonseed oil (10 %) to vacuum gasoil resulted in an increase in the ethylene yield by another 2.2 wt % and an increase in the propylene yield by 3,3 wt.%. Cracking of the pure cottonseed oil under identical conditions provided 16,1 wt.% and 9,2 wt.% yields of ethylene and propylene, respectively. A possibility was established to use halloysite nanotubes as the heating surface for thermal pyrolysis of the above said raw materials at 700–800 °C to produce C2–C3 olefins at higher yields than those achieved in the industrial processes. The full regeneration of halloysites makes it possible to recycle them for thermal transformation of the raw materials under study.
About the Authors
V. M. AbbasovRussian Federation
T. A. Mamedova
Russian Federation
E. G. Ismailov
Russian Federation
E. N. Askerova
Russian Federation
Kh. Sh. Teyubov
Russian Federation
N. V. Gasankhanova
Russian Federation
S. K. Alieva
Russian Federation
References
1. Булкатов А.Н. // Нефтепереработка и нефтехимия. 2008. № 2. С. 7.
2. Кашковский В.И., Григорьев А.А. // Катализ и нефтехимия. 2006. № 14. С. 1.
3. Седгхи Рухи Б.Ф., Капустин В.М., Герзелиев И.М., Третьяков В.Ф. // Катализ в промышленности. 2012. № 6. C. 33.
4. Fujiyama J., Redhwi H., Rahat Saeed M. // Oil and Gas Journal. 2005. P. 54.
5. Ren T., Patel M., Blok K. // Energy. 2006. № 31. Р. 425.
6. Aitani A., Yoshikawa T., Ino T. // Catalysis Today. 2000. Vol. 60. P. 111.
7. Shaikh A., Al-Mutairi E.M., Ino T. // Ind. Eng. Chem. Res. 2008. Vol. 47. P. 9018.
8. Price R., Gaber B., Lvov Y. // Journal of Microencapsulation. 2001. Vol. 18. Р. 713.
9. Joussein E., Petit S., Churchman J. et al. // Clay Miner. 2005. Vol. 40. P. 383.
10. Baal S., Brandow S., Gaber B.P. // Chem. Mater. 1993. Vol. 5. P. 1227.
11. Wilson I.R. // Clay Miner. 2004. Vol. 39. Р. 1.
12. Tari G., Bobos I.C., Gomes S.F., Ferreira J.M.F. // J. Coll. Interf. Sci. 1999. Vol. 210. P. 360.
13. Levis S.R., Deasy P.B. // International Journal of Pharmaceutics. 2002. Vol. 243. Р. 125.
14. Kelly H.M., Deasy P.B., Zaika E., Levis S.R. // International Journal of Pharmaceutics. 2004. Vol. 274. P. 167.
15. Levis S.R., Deasy P.B. // International Journal of Pharmaceutics. 2003. Vol. 253. P. 145.
16. Antill S.J. // Australian Journal of Chemistry. 2003. Vol. 56. P. 723.
17. Fu Y., Zhang L. // J. Solid State Chem. 2005. Vol. 178. P. 3595.
18. Pires J., Carvalho A.P, Pereira P.R., Carvalho M.B. // React. Kinet. Catal. Lett., 1988. Vol. 65. № 1. Р. 9—15
19. Maadhah A.G., Fujiyama Y., Redhwi H. et al. // The Arabian Journal for Science and Engineering. 2008. Vol. 33. № 1 B. Р. 17—28
20. Fujiyama Y., Adachi M., Okuhara T., Yamamoto S. US Patent 6,045,690, April 4, 2000.
21. Walther M. // Oil & Gas Journal, January 27, 2003. Р. 52—54.
22. Okuhara T., Ino T., Abul-Hamayel M., Magarib A., Aitani A. // Petroleum Science and Technology. 2001. Vol. 19. Р. 685—695.
23. Zhaozheng S., Mifu Z., Jijiang G., Lin W., Wong CP; S. // Advances in Specialty Petro-chemicals. 2004. Vol. 5(2).
24. Р. 42—48.
25. Гориславец С.П., Тменов Д.Н., Майоров В.И. Пиролиз углеводородного сырья. Киев: Наукова Думка, 1977. С. 72.
Review
For citations:
Abbasov V.M., Mamedova T.A., Ismailov E.G., Askerova E.N., Teyubov Kh.Sh., Gasankhanova N.V., Alieva S.K. Catalytic method for production of olefins based on natural halloysite nanotubes. Kataliz v promyshlennosti. 2014;(3):20-25. (In Russ.)