Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Influence of the Density of Microspherical Catalysts on the Operating Modes of Fluidized Beds

https://doi.org/10.18412/1816-0387-2017-4-295-303

Abstract

Two types of fine particles of the Geldart class A with different bulk density, ρn = 1200 kg/m3 and ρn = 1300 kg/m3, were used for experimental studies of the circulating fluidized bed. A bench (0.7 m in diameter and 5.75 m in height) was used for the studies at room temperature with air as the fluidizing gas. The fluidization speed ranged from 0.1 to 0.75 m/s. The bed was sectioned in height using a set of horizontal diffuser grids. Fluctuations in average pressure drops and pressure distribution among the height of the fluidized bed were measured to determine the influence of the particle density on the operating modes of the fluidized bed. The transition rate, Uc, was determined from mean square deviations of pressure drop fluctuations to equal Uc = 0.40 m/s for lighter particles and Uc = 0.35 m/s for heavier particles. The transition rate, Uc, determined from the power energy spectrum of pressure fluctuations was 0.45 and 0.40 m/s for the lighter and heavier particles, respectively. The results of pressure measurements along the bed height showed that the pressure decreased linearly upward the bed, the decrease being faster for the heavier particles than for the lighter particles.

About the Authors

O. P. Klenov
Boreskov Institute of Catalysis, Novosibirsk
Russian Federation


A. S. Noskov
Boreskov Institute of Catalysis, Novosibirsk
Russian Federation


O. A. Parakhin
Research and Production Company Sintez, Barnaul
Russian Federation


References

1. Sadeghbeigi R. Fluid Catalytic Cracking Handbook, 2012, 352 p. Elsevier.

2. Пахомов Н.А. Современное состояние и перспективы развития процессов дегидрирования. В сб. Промышленный катализ в лекциях. М.: Калвис, 2006. № 6. С. 53—98.

3. Sanfilippo D., Miracca I. // Catal. Today. 2006. V. 111. № 1—2. P. 133—139.

4. Geldart D. // Powder Technology, 7 (1973) 285—292.

5. Yerushalmi J. and Cankurt N.T. // Powder Technology, 24 (1979) 187—205.

6. Baskakov A.P., Tuponogov V.G. and Filippovsky N.F. // Powder Technology, 45 (1986) 113—117.

7. Clark N.N., Atkinson C.M. // Chem. Eng. Sci. 43 (1988) 1547— 1557.

8. Chehbouni A., Chaouki J., Guy C., Klvana D. // Ind. Eng. Chem. Res., 33 (8) (1994) 1889—1896.

9. Bi H.T., Grace J.R., Zhu J. // Powder Technology 82 (1995) 239—253.

10. Bai D., Shibuya E., Masuda Y. Nakagawa N., Kato K. // Chem. Eng. Sci., Vol. 51, No. 6 (1996) 957—966.

11. Trnka O., Vesely V., Hartman M., Beran Z. // AIChE Journal, Vol. 46, No. 3 (2000), 509—514.

12. Kashkin V.N. Kashkin V.N., Lakhmostov V.S., Zolotarskii I.A., Noskov A.S., Zhou J.J. // Chem. Eng. J. 91 (2003) 215—218.

13. Johnsson F., Zijerveld R.C., Schouten J.C., van den Bleek C.M., Leckner B. // International Journal of Multiphase Flow. 26 (2000) 663—715.

14. Ege P., Grislingas A., de Lasa H.I. // The Chem. Eng. J. 61 (1996) 179—190.

15. Bai D., Issangya A.S. and Grace J.R. // Ind. Eng. Chem. Res. 38 (1999) 803—811.

16. Ellis N., Briens L.A., Grace J.R. Bi, X. T. and Lim, C.J. // Chem. Eng. J. 96 (2003) 105—116.

17. Chen A.H., Bi H.T., Grace J.R. // Powder Technology 135—136 (2003) 181—191.

18. Foka M., Chaouki J., Guy C. and Klvana D. // Chem. Eng. Sci., Vol. 51, No. 5, (1996) 713—723.

19. Bi H.T., Grace J.R. // The Chem. Eng. J. 57 (1995) 261— 271.

20. Harrison D., Grace J.R. Chapter 13. Fluidized beds with internal

21. baffles. In: Fluidization. Ed. by J.F. Davidson, D. Harrison. New

22. York. Academic Press. 1971.

23. Zhang Y., Grace J.R., Bi X. // Chem Eng Sci. 64 (2009) 3270—3281.

24. Zhang Y., Lu C., Shi M. // Chemical Engineering Research and Design. 87 (2009) 1400—1408.

25. Van Dijk J.-J., Hoffmann A.C., Cheesman D., Yates J.G. // Powder Technology. 98 (1998) 273—278.

26. Cui H.P., Strabel M., Rusnell D. Bi H.T., Mansaray K., Grace J.R., Lim C.J., McKnight C.A., Bulbuc D. // Chem. Eng. Sci. 61 (2006) 388—396.

27. Серов А.Н. Разработка и исследование прибора для изме- рения показателей качества электроэнергии с повышенной точностью. Канд. диссертация. НИУ «МЭИ». М., 2016. 394 с.


Review

For citations:


Klenov O.P., Noskov A.S., Parakhin O.A. Influence of the Density of Microspherical Catalysts on the Operating Modes of Fluidized Beds. Kataliz v promyshlennosti. 2017;17(4):295-303. (In Russ.) https://doi.org/10.18412/1816-0387-2017-4-295-303

Views: 588


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)